DOI QR코드

DOI QR Code

Combustion Characteristics of Medium Density Fibreboard (MDF) Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acids

알킬렌디아미노알킬-비스-포스폰산으로 처리된 중밀도섬유판의 연소특성

  • Park, Myung-Ho (Department of Mechanical Engineering, Kangwon National University) ;
  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
  • 박명호 (강원대학교 기계공학과) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2014.06.30
  • Accepted : 2014.07.18
  • Published : 2014.10.10

Abstract

This study was performed to test combustive properties of medium density fibreboard (MDF) plates treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP). MDF specimens were painted three times with 15 wt% solution of the alkylenediaminoalkyl-bis-phosphonic acids at room temperature. After drying specimen treated with chemicals, combustive properties were examined using the cone calorimeter (ISO 5660-1). As a result, combustion-retardation properties increased due to the treatment of bare MDF with alkylenediaminoalkyl-bis-phosphonic acid solution. Especially, the specimens treated with chemicals showed the ignition (TTI) (148 s~116 s) was retarded and the flameout (Tf) (633 s~529 s) time increased, while the total heat release rate (THRR) (61.1~67.0) $MJ/m^2$ was lowered than those of using virgin plate by reducing the burnig rate. Compared with virgin MDF plate, the specimens treated with the alkylenediaminoalkyl-bis-phosphonic acids showed low combustive properties. However the specimens treated with bis-(dimethylaminomethyl) phosphinic acid (DMDP) showed the higher peak heat release rate (PHRR) ($185.08kW/m^2$) than that of the virgin plate.

이 연구에서는 피페라지노메틸-비스-포스폰산, 메틸피페라지노메틸-비스-포스폰산, N,N-디메틸렌디아미노메틸-비스-포스폰산으로 처리된 중밀도섬유판의 연소성을 시험하였다. 15 wt%의 알킬렌디아미노알킬-비스-포스폰산 수용액으로 중밀도섬유판에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소 특성을 고찰하였다. 그 결과, 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편이 무처리 시험편과 비교하여 연소 억제성을 향상시켰다. 특히 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편은 연소속도 감소에 의하여 무처리 시험편과 비교하여 각각 지연된 착화시간(148 s~116 s), 긴 불꽃소멸시간(633 s~ 529 s), 그리고 낮은 총열방출률($61.1MJ/m^2{\sim}67.0MJ/m^2$)을 나타내었다. 따라서 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편은 중밀도섬유판 시험편에 비하여 낮은 연소성질을 나타내었다. 그러나 피페라지노메틸-비스-포스폰산으로 처리한 시험편은 무처리 시험편과 비교하여 높은 최대열방출률($75.7kW/m^2$)을 나타내었다.

Keywords

References

  1. E. Baysal, M. Altinok, M. Colak, S. K. Ozaki, and H. Toker, Fire Resistance of Douglas Fir (Psedotsuga Menzieesi) Treated With Borates and Natural Extractives, Bioresour. Technol., 98, 1101-1105 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme Retardant Treated Plyood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. Y. J. Chung, Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, The Internal Finish Material of the Building (2004).
  5. Article 12 of Firefighting Basic Law, Article 20 of Decree, The Subject Merchandise Flame and Flame Performance Standard (2005).
  6. P. W. Lee and J. H. Kwon, Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particleboards, Mogjae-Gonghak, 11, 16-22 (1983).
  7. T. S. Mcknight, The hygroscopicity of Wood Treated With Fire-Retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  8. J. C. Middleton, S. M. Dragoner, and F. T. Winters, Jr. An evaluation of borates and other inorganic salts as fire retardants for wood products, Fore. Prod. J., 15, 463-467 (1965).
  9. S. L. Levan and J. E. Winandy, Effects of Fire Retardant Treatments on Wood Strength: A Review, Wood Fiber Sci., 22, 113-131 (1990).
  10. C. A. Holmes, Effect of Fire-Retardant Treatments on Performance Properties of Wood, Wood Technology: Chemical Aspects, ACS (1970).
  11. R. Kozlowski and M. Hewig, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
  12. R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood, Polym. Degrad. Stab., 91, 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  13. Y. J. Chung, Y. H. Kim, and S. B. Kim, Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II), J. Ind. Eng., 15, 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  14. Y. J. Chung, Flame Retardancy of Veneers Treated by Ammonium Salts, J. Korean Ind. Eng. Chem., 18, 251-255 (2007).
  15. M. L. Hardy, Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD, Polym. Degrad. Stab., 64, 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  16. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  17. V. Babrauskas, New Technology to Reduce Fire Losses and Costs, In: S. J. Grayson and D. A. Smith (eds.), Elsevier Appied Science Publisher, London, UK. (1986).
  18. M. M. Hirschler, Thermal Decomposition and Chemical Composition, 239, American Chemical Society Symposium Series 797 (2001).
  19. SO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  20. C. H. Lee, C. W. Lee, and J. W. Kim, Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds, Korean Patent 10-2011-0034978 (2011).
  21. Y. J. Chung and E. Jin, Synthesis of Alkylenediaminoalkyl-Bis- Phosphonic Acid Derivatives, J. of Korean Oil Chemist's Soc., 30, 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  22. Y. J. Chung and E. Jin, Synthesis of Dialkylaminoalkyl Phosphonic Acid and Bis (dialkylaminoalkyl) Phosphinic Acid Derivatives, Appl. Chem. Eng., 23, 383-387 (2012).
  23. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd, (2009).
  24. E. Jin and Y. J. Chung, Combustive Characteristics of Pinus Rigida Treated With Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives, Appl. Chem. Eng, 24, 633-638 (2013). https://doi.org/10.14478/ace.2013.1087
  25. W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  26. M. J. Spearpoint, Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model, NIST GCR 99-775, 30-46. National Institute of Standards and Technology, Gaithersburg, U.S.A. (1999).
  27. J. D. DeHaan, Kirks's Fire Investigation, 5th ed., 84-112, Prentice Hall (2002).
  28. V. Babrauskas, Development of Cone Calorimeter-A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials, 8, 81-95 (1984). doi:1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  29. V. Babrauskas and S. J. Grayson, Heat release in Fires, E & FN Spon (Chapman and Hall), London, UK. (1992).
  30. V. Babrauskas, Heat Release Rate, Section 3, The SFPE Handbook of Fire Protection Engineering, 4th ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  31. M. Risholm-Sundman, M. Lundgren, E. Vestin, and P. Herder, Emissions of Acetic Acid and Other Volatile Organic Compounds From Different Species of Solid Wood, Holz alas Rohund Werkstoff, 56, 125-129 (1998). https://doi.org/10.1007/s001070050282
  32. M. J. Spearpoint and G. J. Quintiere, Predicting the Burning of Wood Using an Integral Model, Combust. Flame, 123, 308-324 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  33. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability Assesment of Fire-Retarded Nordic Spruce Wood Using Thermogravimetric Analyses and Cone Calorimettry, Fire Safety J., 44, 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004