DOI QR코드

DOI QR Code

Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer

지표면의 비균질성이 지표층의 난류수송에 미치는 영향

  • Hong, Seon-Ok (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Young-Hee (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lim, Yoon-Jin (Applied Meteorology Research Division, National Institute of Meteorological Research)
  • 홍선옥 (경북대학교 천문대기과학과) ;
  • 이영희 (경북대학교 천문대기과학과) ;
  • 임윤진 (국립기상연구소 응용기상연구과)
  • Received : 2014.03.12
  • Accepted : 2014.06.12
  • Published : 2014.09.30

Abstract

Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

Keywords

References

  1. Arya, S. P., 2001: Introduction to micrometeorology 2ed. Academic Press, 420 pp.
  2. Beljaars, A. C. M., P. Schotanus, and F. T. M. Nieuwstadt, 1983: Surface layer similarity under non-uniform fetch conditions. J. Climate Appl. Meteor., 22, 1800- 1810. https://doi.org/10.1175/1520-0450(1983)022<1800:SLSUNF>2.0.CO;2
  3. De Bruin, H. A. R., W. Kohsiek, and B. J. J. M. van Den Hurk, 1993: A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound.- Layer Meteor., 63, 231-257. https://doi.org/10.1007/BF00710461
  4. Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363-372. https://doi.org/10.1007/BF00240838
  5. Foken, T., and B. Wichura, 1996: Tools for quality assessment of surface-based flux measurements. Agric. Forest Meteor., 78, 83-105. https://doi.org/10.1016/0168-1923(95)02248-1
  6. Hogstrom, U., 1988: Non-dimensional wind and temperature profiles. Bound.-Layer Meteor., 7, 363-372.
  7. Hogstrom, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47, 1949-1972. https://doi.org/10.1175/1520-0469(1990)047<1949:AOTSIT>2.0.CO;2
  8. Howell, J. F., and L. Marht, 1997: Multi-resolution flux decomposition. Bound.-Layer Meteor., 83, 495-520.
  9. Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary layer flows. Oxford, 289 pp.
  10. Katul, G., G. Kuhn, J. Schieldge, and C.-I. Hsieh, 1997a: Turbulent eddy motion at forest-atmosphere Interface. J. Geophys. Res., 102, 13409-13421. https://doi.org/10.1029/97JD00777
  11. Katul, G., G. Kuhn, J. Schieldge, C.-I. Hsieh, G. Kuhn, and D, Ellsowrth, 1997b: The Ejection-Sweep Character of Scalar Fluxes in the Unstable Surface Layer. Bound.-Layer Meteor., 83, 1- 26. https://doi.org/10.1023/A:1000293516830
  12. Katul, G., G. Kuhn, J. Schieldge, S. M. Goltz, C.-I. Hsieh, Y. Cheng, F. Mowry, and J. Sigmon, 1995: Estimation of surface heat and momentum fluxes using the fluxes-variance method above uniform and non-uniform terrain. Bound.- Layer Meteor., 74, 237-260. https://doi.org/10.1007/BF00712120
  13. Lee, Y., B. Lee, K. Kahng, S.-J. Kim, and S.-O. Hong, 2013: Quality control and characteristic of eddy covariance data in the region of Nakdong River. Atmos. Korean Met. Soc., 23, 307-320. https://doi.org/10.14191/Atmos.2013.23.3.307
  14. Li, D., and E. Bou-Zeid, 2011: Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Bound.-Layer Meteor., 140, 243-262. https://doi.org/10.1007/s10546-011-9613-5
  15. Monin, A. S., and A. M. Obuhohov, 1954: Basic laws if turbulent mixing in the surface layer of the atmosphere. Trans. Geophys. Inst. Acad. Sci. USSR, 151, 163-187.
  16. Moriwaki, R., and M. Kanda, 2006: Local and global similarity in turbulent transfer of heat, water vapour and CO$_{2}$ in the dynamic convective sublayer over a suburban area. Bound.-Layer Meteor., 120, 163-179. https://doi.org/10.1007/s10546-005-9034-4
  17. Ohtaki, E., 1985: On the similarity in atmospheric fluctuation of carbon dioxide, water vapor and temperature over vegetated fields. Bound.-Layer Meteor., 31, 25- 37. https://doi.org/10.1007/BF00120032
  18. Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: models and methods for engineering applications. Academic Press, 397 pp.
  19. Raupach, M. R., 1981: Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363-382. https://doi.org/10.1017/S0022112081002164
  20. Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351-382 https://doi.org/10.1007/BF00120941
  21. Roth, M., and T. R. Oke, 1995: Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J. Atmos. Sci., 52, 1863-1874. https://doi.org/10.1175/1520-0469(1995)052<1863:REOTTO>2.0.CO;2
  22. Webb, E. K., G. I. Pearrman, and R. Leuning, 1980: Correction of flux measurements for density effect due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106, 85-100. https://doi.org/10.1002/qj.49710644707
  23. Williams, C. A., T. M. Scanlon, and J. D. Albertson, 2007: Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Bound.-Layer Meteor., 122, 149-165. https://doi.org/10.1007/s10546-006-9097-x
  24. Zhang, Y., H. Liu, Th. Foken, Q. L. Williams, S. Liu, M. Mauder, and C. Liebethal, 2010: Turbulence spectra and cospectra under the influence of large eddies in the Energy Balance Experiment (EBEX). Bound.- Layer Meteor., 136, 235-151. https://doi.org/10.1007/s10546-010-9504-1