DOI QR코드

DOI QR Code

GPS 가강수량 산출을 위한 최소 관측세션 지속시간에 대한 분석

An Analysis of the Least Observing-Session Duration of GPS for the Retrieval of Precipitable Water Vapor

  • 김유준 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 한상옥 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 김기훈 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 김선정 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 김건태 (국립기상연구소 예보연구과 재해기상연구센터) ;
  • 김병곤 (강릉원주대학교 대기환경과학과)
  • Kim, Yoo-Jun (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Han, Sang-Ok (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Ki-Hoon (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Seon-Jeong (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Geon-Tae (High Impact Weather Research Center, Forecast Research Division, National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2014.05.15
  • 심사 : 2014.08.22
  • 발행 : 2014.09.30

초록

This study investigated the performances of precipitable water vapor (PWV) retrieval from the sets of ground global positioning system (GPS) signals, each of which had different length of observing-session duration, for the purpose of obtaining as short session duration as possible that is required at the least for appropriate retrieval of the PWV for meteorological usage. The shorter duration is highly desirable to make the most use of the GPS instrument on board the mobile observation vehicle making measurements place by place. First, using Bernese 5.0 software the PWV retrieval was conducted with the data sets of GPS signals archived continuously in 30 seconds interval during 2-month period of January and February, 2012 at Bukgangneung site. Each of the PWVs produced independently using different session durations was compared to that of radio-sonde launched at the same GPS location, a Bukgangneung site. Second, the same procedure was done using the data sets obtained from the mobile observation vehicle that was operating at Boseong area in Jeonnam province during Changma observation campaign in 2013, and the results were compared to that at Bukgangneung site. The results showed that as the observing-session duration increased the retrieval errors decreased with the dramatic change happening between 3 and 4 hours of the duration. On average, the root mean square error (RMSE) of the retrieved PWV was around 1 mm for the durations of greater than 4 hours. The results at both the Bukgangneung (fixed site) and Boseong (mobile vehicle) seemed to be fairly comparable with each other. From this study it is believed that at least 4 hours of observing-session duration is needed for the retrieval of PWV from the ground GPS for meteorological usage using Bernese 5.0 software.

키워드

참고문헌

  1. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS Meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15787-15801. https://doi.org/10.1029/92JD01517
  2. Chen, H.-Y., S.-B. Yu, H. Tung, T. Tsujii, and M. Ando, 2011: GPS medium-range kinematic positioning for the seafloor geodesy off eastern Taiwan. Eng. J., 15, 17-24.
  3. Daud, M. E., T. Sagiya, F. Kimata, and T. Kato, 2008: Long-baseline quasi-real time kinematic GPS data analysis for early tsunami warning. Earth Planets Space, 60, 1191-1195. https://doi.org/10.1186/BF03352877
  4. Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio. Sci., 20, 1593-1607. https://doi.org/10.1029/RS020i006p01593
  5. Dietrich, S. V. R., K.-P. Johnsen, J. Miao, and G. Heygster, 2004: Comparison of tropospheric water vapor over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis. J. Meteor. Soc. Japan, 82, 259-267. https://doi.org/10.2151/jmsj.2004.259
  6. Eckl, M. C., R. A. Snay, T. Soler, M. W. Cline, and G. L. Mader, 2001: Accuracy of GPS-derived relative positions as a function of interstation distance and observing- session duration. J. Geodesy, 75, 633-640. https://doi.org/10.1007/s001900100204
  7. Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro, 1991: Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophys. Res., 96, 6541-6555. https://doi.org/10.1029/90JB00834
  8. Estey L. H., and C. M. Meertens, 1999: TEQC: The multipurpose toolkit for GPS/GLONASS data. GPS Solutions, 3, 42-49. https://doi.org/10.1007/PL00012778
  9. Gradinarsky, L. P., J. M. Johansson, H. R. Bouma, H.-G. Scherneck, and G. Elgered, 2002: Climate monitoring using GPS. Phys. Chem. Earth, 27, 335-340. https://doi.org/10.1016/S1474-7065(02)00009-8
  10. Groves, P. D., 2007: Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigations System. Artech House.
  11. Ha, J. H., K. D. Park, and B. H. Heo, 2008: Comparisons of a local mean temperature equation for GPS-based precipitable water vapor over the Korean peninsula. J. Astron. Space Sci., 25, 425-434 (in Korean with English abstract). https://doi.org/10.5140/JASS.2008.25.4.425
  12. Kim, D. S., J. H. Won, H. I. Kim, K. H. Kim, and K. D. Park, 2010a: Accuracy analysis of GPS-derived precipitable water vapor according to interpolation methods of meteorological data. J. Korea Spatial Information Soc., 18, 33-41 (in Korean with English abstract).
  13. Kim, D. S., K. D. Park, S. H. Lee, and H. S. Lee, 2010b: Variation of position accuracy due to observation time and baseline distance in GPS survey. Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 2010, 187-190 (in Korean with English abstract).
  14. Kim, K. H., Y. H. Kim, and D. E. Chang, 2009: The analysis of Changma structure using radiosonde observational data from KEOP-2007: Part I. The assessment of the radiosonde data. Atmosphere, 19, 213-226 (in Korean with English abstract).
  15. Kuo, Y.-H., Y.-R. Guo, and E. R. Westwater, 1993: Assimilation of precipitable water measurements into a mesoscale numerical model. Mon. Wea. Rev., 121, 1215-1238. https://doi.org/10.1175/1520-0493(1993)121<1215:AOPWMI>2.0.CO;2
  16. Kwon, H.-T., T. Iwabuchi, and G.-H. Lim, 2007: Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula. J. Meteor. Soc. Japan, 85, 733-746. https://doi.org/10.2151/jmsj.85.733
  17. Leica Geosystems, 2000: General guide to static and rapidstatic. GPS System 500, 12 p.
  18. Liou, Y.-A., Y. T. Teng, T. Van Hove, and J. C. Liljegren, 2001: Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol., 40, 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  19. Martin, A., A. B. Anquela, J. L. Berne, and M. Sanmartin, 2012: Kinematic GNSS-PPP results from various software packages and raw data configurations. Sci. Res. Essays, 7, 419-431.
  20. Nakamura, H., H. Seko, and Y. Shoji, Aerological Observatory, Meteorological Instruments Center, 2004: Dry biases of humidity measurements from Vaisala RS80- A and Meisei RS2-91 Radiosondes and from groundbased GPS. J. Meteor. Soc. Japan, 82, 277-299. https://doi.org/10.2151/jmsj.2004.277
  21. Nam, Y. S., D. Kuang, and B. E. Schutz, 1996: Comparison of GPS estimates of wet tropospheric delays with WVR measurements. Proc. 9th Int. Tech. Meeting of the ION, 827-834.
  22. Ohtani, R., and I. Naito, 2000: Comparisons of GPSderived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res., 105, 26917- 26930. https://doi.org/10.1029/2000JD900362
  23. Pacione, R., E. Fionda, R. Ferrara, R. Lanotte, C. Sciarretta, and F. Vespe, 2002: Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy. Phys. Chem. Earth, 27, 309-316. https://doi.org/10.1016/S1474-7065(02)00005-0
  24. Psimoulis, P. A., V. A. Kontogianni, A. Nickitopoulou, S. I. Pytharouli, P. Triantafyllidis, and S. C. Stiros, 2004: Estimating the optimum duration of GPS static observations for short baseline length determination in Greece. FIG Working Week 2004, TS 29.6.
  25. Rocken, C., J. Braun, T. VanHove, and R. Ware, 2000: GPS Networks for Atmospheric Sensing. Proc. ION National Technical Meeting, Anaheim, CA, Jan 26- 28.
  26. Saastamoinen, J. H., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophys. Monogr., 15, 247-252.
  27. Sohn, D. H., K. D. Park, J. H. Won, Y. K. Choi, and C. D. Kee, 2011: Analysis of GPS signal environment at DGNSS stations. J. Navigation and Port Res., 35, 625-629. https://doi.org/10.5394/KINPR.2011.35.8.625
  28. Sohn, D. H., K. D. Park, H. I. Kim, D. S. Kim, and C. D. Kee, 2012: Comparative experiments for the improvement of NDGPS signal quality. J. Navigation and Port Res., 36, 625-630 (in Korean with English abstract). https://doi.org/10.5394/KINPR.2012.36.8.625
  29. Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, and K. Beierle, 2002: Corrections of humidity measurement errors from Vaisala RS80-Radiosonde-Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 981-1002. https://doi.org/10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2

피인용 문헌

  1. Analysis of the Relationship of Water Vapor with Precipitation for the Winter ESSAY (Experiment on Snow Storms At Yeongdong) Period vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.019
  2. Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea vol.32, pp.4, 2016, https://doi.org/10.7780/kjrs.2016.32.4.3