탄성 메타물질의 구현과 응용

  • Published : 2014.10.20

Abstract

Keywords

References

  1. Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., 2000, Locally Resonant Sonic Materials, Science, Vol. 289, No. 5485, pp. 1734-1736. https://doi.org/10.1126/science.289.5485.1734
  2. Zhou, X. and Hu, G., 2009, Analytic Model of Elastic Metamaterials with Local Resonances, Physical Review B, Vol. 79, No. 19, 195109. https://doi.org/10.1103/PhysRevB.79.195109
  3. Modinos, A., Yannopapas, V. and Stefanou, N., 2000, Scattering of Electromagnetic Waves by Nearly Periodic Structures, Physical Review B, Vol. 61, No. 12, pp. 8099-8107. https://doi.org/10.1103/PhysRevB.61.8099
  4. Wu, Y., Lai, Y. and Zhang, Z.-Q., 2007, Effective Medium Theory for Elastic Metamaterials in Two Dimensions, Physical Review B, Vol. 76 , No. 20, 205313. https://doi.org/10.1103/PhysRevB.76.205313
  5. Wu, Y. and Zhang, Z.-Q., 2009, Dispersion Relations and Their Symmetry Properties of Electromagnetic and Elastic Metamaterials in Two Dimensions, Physical Review B, Vol. 79, No. 19, 195111. https://doi.org/10.1103/PhysRevB.79.195111
  6. Liu, Z., Chan, C. T. and Sheng, P., 2005, Analytic Model of Phononic Crystals with Local Resonances, Physical Review B, Vol. 71, No. 1, 014103. https://doi.org/10.1103/PhysRevB.71.014103
  7. Zhu, R., Liu, X. N., Huang, G. L., Huang, H. H. and Sun, C. T., 2012, Microstructural Design and Experimental Validation of Elastic Metamaterial Plates with Anisotropic Mass Density, Physical Review B, Vol. 86, No. 14, 144307. https://doi.org/10.1103/PhysRevB.86.144307
  8. Lai, Y., Wu, Y., Sheng, P. and Zhang, Z.-Q., 2011, Hybrid Elastic Solids, Nature Materials, Vol. 10, No. 8, 5. https://doi.org/10.1038/nmat2927
  9. Liu, A. P., Zhu, R., Liu, X. N., Hu, G. K. and Huang, G. L., 2012, Multi-displacement Microstructure Continuum Modeling of Anisotropic Elastic Metamaterials, Wave Motion, Vol. 49, No. 3, pp. 411-426. https://doi.org/10.1016/j.wavemoti.2011.12.006
  10. Ding, Y., Liu, Z., Qiu, C. and Shi, J., 2007, Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density, Physical Review Letters, Vol. 99, No. 9, 093904. https://doi.org/10.1103/PhysRevLett.99.093904
  11. Wu, Y., Lai, Y. and Zhang, Z.-Q., 2011, Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density, Physical Review Letters, Vol. 107, No. 10, 105506. https://doi.org/10.1103/PhysRevLett.107.105506
  12. Liu, X. N., Hu, G. K., Huang, G. L. and Sun, C. T., 2011, An Elastic Metamaterial with Simultaneously Negative Mass Density and Bulk Modulus, Applied Physics Letters, Vol. 98, No. 25, 251907 https://doi.org/10.1063/1.3597651
  13. Milton, G. W., Briane, M. and Willis, J. R., 2006, On Cloaking for Elasticity and Physical Equations with a Transformation Invariant Form, New Journal of Physics, Vol. 8, No. 10, 248. https://doi.org/10.1088/1367-2630/8/10/248
  14. Lee, M. K. and Kim, Y. Y., 2013, Horizontal Cloaking and Vertical Reflection by Transformation Acoustics, AIP Advances, Vol. 3, No. 5, 052114. https://doi.org/10.1063/1.4805353
  15. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. and Smith, D. R., 2006, Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science, Vol. 314, No. 5801, pp. 977-980. https://doi.org/10.1126/science.1133628
  16. Lin, S. S., Huang, T. J, Sun, J.-H. and Wu, T.-T, 2009, Gradient-index Phononic Crystals, Physical Review B, Vol. 79, No. 9, 094302. https://doi.org/10.1103/PhysRevB.79.094302
  17. Wu, T.-T., Chen, Y.-T., Sun, J.-H., Lin, S.-C. S. and Huang, T. J., 2011, Focusing of the Lowest Antisymmetric Lamb Wave in a Gradientindex Phononic Crystal Plate, Applied Physics Letters, Vol. 98, No. 17, 171911. https://doi.org/10.1063/1.3583660
  18. Lee, H. J., Kim, H. W. and Kim, Y. Y., 2011, Far-field Subwavelength Imaging for Ultrasonic Elastic Waves In a Plate Using An Elastic Hyperlens, Applied Physics Letters, Vol. 98, No. 24, 241912. https://doi.org/10.1063/1.3600634
  19. Lee, M. K., Ma, P. S., Lee, I. K., Kim, H. W. and Kim, Y. Y., 2011, Negative Refraction Experiments with Guided Shear-horizontal Waves in Thin Phononic Crystal Plates, Applied Physics Letters, Vol. 98, No. 1, 011909. https://doi.org/10.1063/1.3533641
  20. Ma, P. S., Kim, H. W., Oh, J. H. and Kim, Y. Y., 2011, Mode Separation of a Singlefrequency Bi-modal Elastic Wave Pulse by a Phononic Crystal, Applied Physics Letters, Vol. 99, No. 20, 201906. https://doi.org/10.1063/1.3662446
  21. Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., 1993, Acoustic Band Structure of Periodic Elastic Composites, Physical Review Letters, Vol. 71, No. 13, pp. 2022-2025. https://doi.org/10.1103/PhysRevLett.71.2022
  22. Ao, X. and Chan, C. T., 2008, Far-field Image Magnification for Acoustic Waves Using Anisotropic Acoustic Metamaterials, Physical Review E, Vol. 77, No. 2, 025601.
  23. Oh, J. H., Seung, H. M. and Kim, Y. Y., 2014, A Truly Hyperbolic Elastic Metamaterial Lens, Applied Physics Letters, Vol. 104, No. 7, 073503. https://doi.org/10.1063/1.4865907
  24. Zhang, X. and Liu, Z., 2004, Negative Refraction of Acoustic Waves in Twodimensional Phononic Crystals, Applied Physics Letters, Vol. 85, No. 2, pp. 341-343. https://doi.org/10.1063/1.1772854
  25. Ke, M., Liu, Z., Cheng, Z., Li, J., Peng, P. and Shi, J., 2007, Flat Superlens by Using Negative Refraction in Two-dimensional Phononic Crystals, Solid State Communications, Vol. 142, No. 3, pp. 177-180. https://doi.org/10.1016/j.ssc.2007.01.046
  26. Qiu, C., Liu, Z., Shi, J. and Chan, C. T., 2005, Directional Acoustic Source Based on the Resonant Cavity of Two-dimensional Phononic Crystals, Applied Physics Letters, Vol. 86, No. 22, 224105. https://doi.org/10.1063/1.1942642
  27. Song, K., Lee, S.-H., Kim, K., Hur, S. and Kim, J., 2014, Emission Enhancement of Sound Emitters Using an Acoustic Metamaterial Cavity, Scientific Reports, Vol. 4, No. 4165, 04165.
  28. Chen, S., Zhang, Y., Hao, C., Lin, S. and Fu, Z., 2014, Functionally Graded Materials For Impedance Matching in Elastic Media, Physics Letters A, Vol. 378, No. 1-2, pp. 77-81. https://doi.org/10.1016/j.physleta.2013.10.040
  29. Lee, I. K., Kim, Y. J., Oh, J. H. and Kim, Y. Y., 2013, One-dimensional Broadband Phononic Crystal Filter with Unit Cells Made of Two Non-uniform Impedance-mirrored Elements, AIP Advances, Vol. 3 , No. 2, 022105. https://doi.org/10.1063/1.4790638
  30. Oudich, M., Assouar, M. B. and Hou, Z., 2010, Propagation of Acoustic Waves and Waveguiding in a Two-dimensional Locally Resonant Phononic Crystal Plate, Applied Physics Letters, Vol. 97, No. 19, 193503. https://doi.org/10.1063/1.3513218
  31. Oh, J. H., Lee, I. K., Ma, P. S. and Kim, Y. Y., 2011, Active Wave-guiding of Piezoelectric Phononic Crystals, Applied Physics Letters, Vol. 99, No. 8, 083505. https://doi.org/10.1063/1.3630231
  32. Merheb, B., Deymier, P. A., Jain, M., Aloshyna-Lesuffleur, M., Mohanty, S., Berker, A. and Greger, R. W., 2008, Elastic and Viscoelastic Effects in Rubber/Air Acoustic Band Gap Structures: A Theoretical and Experimental Study, Journal of Applied Physics, Vol. 104, No. 6, 064913. https://doi.org/10.1063/1.2980330
  33. Oh, J. H., Kim, Y. J. and Kim, Y. Y., 2013, Wave Attenuation and Dissipation Mechanisms in Viscoelastic Phononic Crystals, Journal of Applied Physics, Vol. 113, No. 10, 106101. https://doi.org/10.1063/1.4795285
  34. Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P., 2012, Dark Acoustic Metamaterials as Super Absorbers for Lowfrequency Sound, Nature Communications, Vol. 3, 756. https://doi.org/10.1038/ncomms1758
  35. Zhu, R., Liu, X. N., Hu, G. K., Sun, C. T. and Huang, G. L., 2014, A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression, Journal of Sound and Vibration, Vol. 333, No. 10, pp. 2759-2773. https://doi.org/10.1016/j.jsv.2014.01.009
  36. Stenger, N., Wilhelm, M. and Wegener, M., 2012, Experiments on Elastic Cloaking in Thin Plates, Physical Review Letters, Vol. 108, No. 1, 014301. https://doi.org/10.1103/PhysRevLett.108.014301
  37. Wu, L.-Y., Chen, L.-W. and Liu, C.-M., 2009, Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal, Applied Physics Letters, Vol. 95, No. 1, 013506. https://doi.org/10.1063/1.3176019