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Abstract: In micro-scale electromechanical systems, the power to perform accurate position sensing often greatly exceeds the power 

needed to generate motion. This paper explores the implications of sampling rate and amplifier noise density selection on the 

performance of a system identification algorithm using a capacitive sensing circuit. Specific performance objectives are to minimize 

or limit convergence rate and power consumption to identify the dynamics of a rotary micro-stage. A rearrangement of the 

conventional recursive least-squares identification algorithm is performed to make operating cost an explicit function of sensor 

design parameters. It is observed that there is a strong dependence of convergence rate and error on the sampling rate, while energy 

dependence is driven by error that may be tolerated in the final identified parameters. 
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I. INTRODUCTION 

For micro-scale actuation systems operating with feedback, 

power consumption of sensors and sensing circuitry can rival or 

exceed that of the miniature actuators that they are used to control. 

These phenomena can be observed in the comparison of actuator 

and sensor power loads for examples of piezoelectric [1] or 

electrostatic [2] actuation. Nonetheless, despite the relatively high 

cost of sensing, feedback in some form is often necessary because 

of extremely precise movements may be desired, and because 

micro-systems themselves may contain significant variation from 

nominal models due to atmospheric effects, large microfabrication 

variations, or modeling error. 

An alternative approach to control of such systems is to operate 

primarily in open-loop using a model that is precisely identified 

over a relatively short duration of sensor use, and only return to 

active use of feedback for critical situations. However, the energy 

consumed while identifying system parameters may depend 

significantly on how the sensor is designed and utilized. Two 

primary design parameters are fixed measurement sampling rate, 

for which a higher rate leads to higher power consumption, and 

sensor noise, for which lower variance requires higher power 

consumption. Previous studies of sampling rate selection for 

system identification have indicated that optimal sampling rates 

exist that minimize the total time required to identify a given set 

of model parameters [3-8] without power constraint. 

This paper introduces an approach to evaluating those two 

parameters so as to minimize the expected energy needed to 

perform system identification of a linear system to a desired error 

tolerance using a recursive least-squares algorithm. The specific 

motivated problem is high-precision positioning of an electrostatic 

rotary micro-stage. For this application, feedforward control of 

rotation to a desired position requires significantly less power than 

active feedback control, provided that the system’s model 

parameters are accurately known. 

 

II. SYSTEM DESCRIPTION 

The system to be considered is assumed to be a linear system 

subject only to measurement noise. In the motivating example as 

shown schematically in Fig. 1, this reflects a cylindrical rotor 

spinning on a fluid bearing, with constant inertia, damping, and 

input gain parameters. As a general form, it is treated as a 

continuous LTI system with the Gaussian white noise such that 
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where the state vector, an input, an output, and the noise are 

,
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w R∈  respectively. 
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(a) Top view. (b) A-A side view. 

그림 1. 적용예: 마이크로 회전 구동기. 

Fig.  1. The Motivating Example of a Rotary Actuator. 
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표   1. 노이즈 및 전력 모델 (3)과 (4)에 사용된 계수. 

Table 1. Coefficient of noise and power models of (3) and (4). 

Coefficient Specific Values 

v1 [V
2
rms/Hz] 10

2.21 10
−

×  

v2 
3

3.16 10×  

p1 [V] 90 

p2 [W/Hz] 4
4.2 10

−

×
 

p3 [W] 0.104 

 

Alternatively, the corresponding input/output difference forms 

of (1) with a Gaussian white noise w and a sample time Ts are 
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where θ is a vector of system parameters and Φ is a vector of 

sensing measurements for input and output. 

A common type of sensing technique for miniature or micro-

scale systems is capacitive sensing with a differential capacitive 

sensing circuit. Under many circumstances, a noise model of vn 

from (2) and power consumption, Ptot, can be approximately 

related to the selected sample time, Ts, and the voltage noise 

spectral density, en, and the supply current, Is, of an operational-

amplifier used for filtering and signal amplification as follows: 

 
2

2

1 2

1 [ ( )]
n s

n

s s

e I
v v v

T T
= +  (3) 

 
1 2 3

1

tot s

s

P p I p p
T

= + +  (4) 

Here, v1 and v2 are constants of noise generation and p1, p2, and 

p3 are constants of power consumption dictated by resistors, 

capacitors, and other circuit components. The coefficients in (3) 

and (4) are shown in Table 1. For common commercially 

available op-amps, en is roughly inversely proportional to the 

supply current of the op-amp, Is, as shown in [7] and [9]. Based on 

the data in [9], the estimated en with respect to Is is roughly 

27 15 27 14 27 13( ) 7.67 10 0.43 10 0.01 10
n s s s s
e I I I I= × − × + ×  (5) 

 

III. PARAMETER IDENTIFICATION ALGORITHM 

Parameter adaptation of (2) is assumed to be performed using a 

standard recursive least squares (RLS) with forgetting factor. 
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where ˆθ  is an estimation vector of unknown θ from (2), ŷ  is 

the estimation of output, y, P is a adaptation gain, Φ is a vector of 

sensing measurements for input and output of (2), and λ is 

forgetting factor. 

Because (2)-(5) are functions of sampling rate, the parameter 

estimation of (2) by (6) also depends on sensing sample rate and 

OP-Amp’s supply current, such that there may exist a trade-off 

between the accuracy of parameter estimation and the energy 

usage of a system. 

 

IV. SENSING PARAMETER OPTIMIZATION 

1. Modification of RLS to find optimal sample rate and 

noise properties 

To perform a rapid evaluation of the effects of sampling rate 

and noise amplitude on convergence time and identification error, 

the standard RLS equation (6) is converted to a cumulative 

function of measurements up to an arbitrary number of samples 

when ˆ(1) 0,=θ  as follows: 
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Let k =(n-1)Ts, a given number of samples is N, and a 

converged parameter set at a given final time is θf , then, we can 

obtain the modified RLC function which explicitly depends on Ts 

and noise properties, ω, as follows in (9) 
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By performing this conversion, the parameter estimate becomes 

a direct function of the sampling rate through the dependence of a 

final desired θf on Ts under a given number of samples, which may 

then be optimized using standard numerical solvers. 

 

2. Problem statement and optimization procedure 

The next objective is to search for an optimal sample rate and 

selection of amplifier noise density using (9) based on balancing 

maximum available energy usage of the system against estimation 

performance. Therefore, assuming that there exist a desired 

solution, θ
*, for the unknown parameter vector over a given 

number of time step, N, the search for reasonable sample rate with 

a given choice of noise density can be presented by 

 *

,
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where Emax is a maximum available energy for the system.  

Alternatively, if there exists a desired performance of parameter 

estimation, εn, and a given scalar value, ε1, such that ε1≤εn, then 

(10) can be modified by 

 
( 1)
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min  ( )
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 *

1
( )E N ε⎡ ⎤− ≤⎣ ⎦θ θ  (11b) 

Having made the conversion of the standard RLS problem to 

(9), the (10) or (11) becomes simply a numerical search problem 

to obtain the solution of a nonlinear equation, which can be solved 

by using common numerical techniques. 

A sample optimization, in full, is carried out as follows: 

(a) Select desired values of ε1 

and Emax. 

(b) Assume a value of Is and obtain a value of en using (5) 

(c) Select an initial Ts, and N 

(d) Solve (10a) by searching for the optimal Ts and N under the 

constraint (10b)-2 with a numerical solver. 

(e) If no solution is found, return to (c). Or, if multiple local minima 

are found, evaluate (10b)-1 from the several solutions of Ts 

(f) If the condition of (10b)-1 is satisfied and the smallest of 

candidate solutions, the solution of Ts is a minimum and 

verified to meet constraints. Otherwise return to (b). 

To check results, the obtained Ts and N are utilized in the 

standard RLS (6) to verify estimation performance with the 

identified set of sensing parameters. 

 

V. CASE STUDY 

1. System description 

Here, an example of sensing parameter selection based on the 

modified RLC function (9) and the optimizing problem (10) is 

presented for the MEMS rotary actuator introduced earlier. The 

corresponding input/output difference model of the system is 
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where θ
* = [a1 b0] = [4896 2572] is the nominal continuous 

model parameters to be identified, the perturbing input is u(t) = 

αsin(2πfdt), α = 50, fd = 33.3 Hz, and the forgetting factor from (9) 

is λ = 0.9. 

 

2. Selection of proper noise amplitude of an OP-Amp and 

initial values to perform (10) 

For the optimization procedure described in the previous 

section, first we selected target ε1 and Emax as 0.5 and 50 J 

respectively. The maximum power consumption, Pmax, to satisfy 

(10b-1) is about 200 mW. For initial op-amp selection, 1 mA for Is 

was selected based on (4), since the power consumption of the 

corresponding sensing circuit is 190 mW with assumptions of p1 = 

90, p3 = 100 mW. Using the initial Is, the starting en becomes 8 

nV/rHz based on (5). 

3. Performing (10) and obtaining an optimal sample time 

and the number of sample 

Through careful selection of sampling rates, as shown in the 

Fig. 2, error in estimates of system operating parameters can be 

minimized. This allows a reduced number of samples to be taken 

to satisfy the constraint (10b-1). According to Fig. 2 and Table 2, 

the optimized sample time and the number of samples for the test 

system are 4 msec and 100, respectively. Fig. 3 shows the 

associated trends in energy and power consumption versus 

sampling rate for fixed numbers of samples.  

Additionally, a trend between energy usage and estimation 

error are tested with respect to the several noise spectral densities 

of OP-Amps for the selected parameter, Ts = 4 msec and N = 100. 

As shown in Fig. 4, if very high amplitude noise were used the 

energy consumption could be dramatically reduced, while the 

estimation error could be increased extremely. Therefore, proper 

selection of noise amplitude of an OP-Amp is necessary. 
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그림 2. 계측 센서의 사용 전력 최소화 조건을 위한 한정된 

샘플 개수(N) 하에서, 시스템 파라미터(θ)의 고정밀 

모델 식별을 위한 샘플 시간 선정. 

Fig.  2. Proper selection of sampling times for highly accurate 

identification of system parameter (θ) in a finite number of 

samples (N), under minimizing duration of the relatively high 

position sensor power load. 
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그림 3. 계측 샘플 시간과 샘플 개수 변화에 따른 전체 에너

지 및 전력량 비교. 

Fig.  3. Total Energy and Power Consumption vs. Sample Times 

with respect to the Number of Samples. 
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그림 4. 앰프의 노이즈 특성에 따른 에너지 및 전력 사용과 

모델 식별 오차의 증감 경향. 

Fig.  4. Energy and Power Usage Vs. Estimation Error Trend for 

Noise Spectral Densities of OP-Amps. 
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그림 5. Ts = 4 msec 이고 N = 100 인 경우, 일반적인 RLS를 이

용하여 식별된 시스템 파라미터 결과 

Fig.  5. Estimation of System Parameters Using the Standard RLS, 

Ts = 4 msec, and N = 100. 

 

4. Verifying the obtained sensing parameter with the 

standard RLS 

The obtained sensing parameters are utilized on the standard 

RLS (6) to verify estimation performance of system parameter. As 

shown in Fig. 5, the estimated parameters are converged at 100 

numbers of samples and norm of estimation error is similar to the 

obtained results on Table 2. 

 

표   2. 샘플 개수와 속도에 따른 식별 성능과 에너지 비교. 

Table 2. Obtained performance and Energy for the number of sample 

and sample rates. 

Error Ts (msec) N Power (W) Energy (mJ) 

0.55 

0.22 100 2.1 46.3 

4 100 0.29 119 

3.7 200 0.3 227 

6.4 200 0.26 332 

3.7 300 0.3 341 

6 300 0.26 475 

VI. CONCLUSION 

The work in this paper sought to explore whether optimal rates 

may also exist. Unlike other papers on model identification, 

sampling rate and noise amplitude were weighted by sensor 

power consumption, for certain sensing situations. It was 

hypothesized that there would exist optimal selections of sampling 

rate and amplifier noise density that would minimize total energy 

to meet a desired maximum identification error, or to minimize 

error for a given energy usage. It was found that for the test case 

there was an optimal sampling rate to minimize error in a limited 

number of time steps, but that energy trade offs were primarily 

associated with selection of amplifier power consumption. To 

evaluate these trends, a rearrangement of the standard recursive-

least squares algorithms was made that could be directly 

optimized by numerical optimization solvers, and was found to 

remain an accurate predictor of true RLS performance in 

simulation. 

The current work is clearly limited in studying only a single, 

relatively simple candidate system, but the methods used are 

applicable to more general linear systems. More general results 

for linear system identification when costs are constrained or 

weighted by power consumption of sensing circuitry would be 

desirable. The existing conclusions drawn would be strengthened 

by future quantification of computational gains over simulation 

studies of RLS, and study of the effects of forgetting factor 

selection. Nonetheless, the approach provided in this paper at least 

provides a method for optimizing elements of capacitive sensing 

systems for micro-electromechanical systems when precise 

knowledge of system dynamics under power or energy constraints 

is desired. 
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