DOI QR코드

DOI QR Code

Effects of implant thread profile on insertion stress generation in cortical bone studied by dynamic finite element simulation

유한요소 모사해석을 통한 임플란트 나사산 형상이 치밀골의 식립응력에 미치는 영향 분석

  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Ha, Seok-Joon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Cho, Jin-Hyun (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 유원재 (경북대학교 치의학전문대학원 치과교정학교실) ;
  • 하석준 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조진현 (경북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2014.06.19
  • Accepted : 2014.08.05
  • Published : 2014.10.31

Abstract

Purpose: The aim of this study was to investigate the effect of implant thread profile on the marginal bone stresses which develop during implant insertion. Materials and methods: Four experimental implants were created by placing four different thread systems on the body ($4.1mm{\times}10mm$) of the ITI standard implant. The thread types studied in this study included the buttress, v-shape, reverse buttress, and square shape threads. In order to examine the insertion stress generation, 3D dynamic finite element analysis was performed which simulated the insertion process of implants into a 1.2 mm thick cortical bone plate (containing 3.5 mm pilot hole) using a PC-based DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Results: Insertion stresses higher than human cortical bone developed around the implants. The level of insertion stresses was much different depending on the thread. Stress level was lowest near the v-shape thread, and highest near the square shaped thread. Difference in the interfacial bone stress level was more noticeable near the valley than the tip of the threads. Conclusion: Among the four threads, the v-shape thread was turned out to minimize the insertion stress level and thereby create better conditions for implant osseointegration.

목적: 임플란트가 식립되는 동적과정을 유한요소해석으로 모사하여, 임플란트 나사형상 차이가 변연골의 식립 응력발생에 미치는 영향을 조사하고자 한다. 재료 및 방법: 코어직경 3.5 mm, 매식부 길이 10 mm인 Straumann 임플란트 몸체 외형에 서로 다른 4종의 나사산이 부여된 가상의 임플란트 모델 4개를 CAD 프로그램을 이용하여 각각 제작하였다. 4종 나사산은 buttress 형, v-자 형, reverse buttress 형, square 형이며, 나사산의 높이와 피치는 0.3 mm와 1.0 mm로 모두 동일하다. 각 임플란트가 3.8 mm pilot hole을 갖는, 1.2 mm 두께 치밀골에 식립되는 과정을 $DEFORM^{TM}$ 3D (ver. 6, SFTC, Columbus, OH, USA) 프로그램을 사용하여 모사/해석하였으며, 식립이 진행되는 과정에 인접골에 생성/누적되는 응력(식립응력)을 비교 분석하였다. 결과: 임플란트 식립 초기, 그 하단부가 pilot hole 내로 진입하며 나사산이 골벽을 압박/변형시키는 단계에서 식립 토오크와 응력이 급격히 발생하였으며 그 이후에 토오크와 응력이 모두 감소하는 변화를 보였다. 식립 응력은 임플란트 나사산 형상에 따라 현저한 차이가 있었으며, v-자형 나사산 경우가 가장 낮았고, square 형의 경우가 가장 높았다. 나사산 차이가 인접골 응력에 미치는 영향은 나사산 첨부 보다는 기저부에 인접한 위치에서 더 현저하였다. 결론: 임플란트 식립응력을 낮추어 골융합에 유리한 환경을 조성하는데는 나사산 첨부가 상대적으로 날카로운 v-자형 나사산이 유리하다.

Keywords

Acknowledgement

Supported by : 경북대학교

References

  1. Cochran DL. A comparison of endosseous dental implant surfaces. J Periodontol 1999;70:1523-39. https://doi.org/10.1902/jop.1999.70.12.1523
  2. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
  3. Grunder U, Polizzi G, Goene R, Hatano N, Henry P, Jackson WJ, Kawamura K, Kohler S, Renouard F, Rosenberg R, Triplett G, Werbitt M, Lithner B. A 3-year prospective multicenter follow-up report on the immediate and delayed-immediate placement of implants. Int J Oral Maxillofac Implants 1999;14:210-6.
  4. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002;29:197-212. https://doi.org/10.1034/j.1600-051X.29.s3.12.x
  5. Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 1999;14:798-810.
  6. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.
  7. Sakka S, Baroudi K, Nassani MZ. Factors associated with early and late failure of dental implants. J Investig Clin Dent 2012;3:258-61. https://doi.org/10.1111/j.2041-1626.2012.00162.x
  8. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect 2009;72:104-10. https://doi.org/10.1016/j.jhin.2009.02.010
  9. Miyamoto Y. Risk factors of dental implant failure and the counter meausres. To decrease the implant failures. Shikoku Dent Res 2006;18;211-20.
  10. Manor Y, Oubaid S, Mardinger O, Chaushu G, Nissan J. Characteristics of early versus late implant failure: a retrospective study. J Oral Maxillofac Surg 2009;67:2649-52. https://doi.org/10.1016/j.joms.2009.07.050
  11. Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004;15:625-42. https://doi.org/10.1111/j.1600-0501.2004.01117.x
  12. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 2008;19:119-30. https://doi.org/10.1111/j.1600-0501.2007.01453.x
  13. Lang NP, Mombelli A, Tonetti MS, Bragger U, Hammerle CH. Clinical trials on therapies for peri-implant infections. Ann Periodontol 1997;2:343-56. https://doi.org/10.1902/annals.1997.2.1.343
  14. Piattelli A, Scarano A, Piattelli M. Histologic observations on 230 retrieved dental implants: 8 years' experience (1989-1996). J Periodontol 1998;69:178-84. https://doi.org/10.1902/jop.1998.69.2.178
  15. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
  16. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94. https://doi.org/10.1111/j.1600-0501.2005.01132.x
  17. Hanggi MP, Hanggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. J Periodontol 2005;76:791-802. https://doi.org/10.1902/jop.2005.76.5.791
  18. Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8. https://doi.org/10.1111/j.1532-849X.1992.tb00422.x
  19. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clin Oral Implants Res 2001;12:196-201. https://doi.org/10.1034/j.1600-0501.2001.012003196.x
  20. O'Brien GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7. https://doi.org/10.1563/0.699.1
  21. Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-202.
  22. Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405. https://doi.org/10.1034/j.1600-0501.1999.100506.x
  23. Misch CE. Dental implant prosthetics. St. Louis; Mosby; 2005. p. 322-47.
  24. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  25. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58. https://doi.org/10.1016/S0021-9290(03)00164-7
  26. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65-74.
  27. Seo YH, Vang MS, Yang HS, Park SW, Park HO, Lim HP. Three dimentional finite element analysis of stress distribution for different implant thread slope. J Korean Acad Prosthodont 2007;45:482-91.
  28. Yu W, Park HS, Kyung HM, Kwon OW. Dynamic simulation of the self-tapping insertion process of orthodontic microimplants into cortical bone with a 3-dimensional finite element method. Am J Orthod Dentofacial Orthop 2012;142:834-41. https://doi.org/10.1016/j.ajodo.2012.08.016
  29. Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 1994;64:175-88.
  30. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Maxillofac Surg 2001;29:100-5.
  31. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52. https://doi.org/10.1034/j.1600-0501.1996.070208.x

Cited by

  1. Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling vol.53, pp.2, 2015, https://doi.org/10.4047/jkap.2015.53.2.120