DOI QR코드

DOI QR Code

Research Progress in Applying Proteomics Technology to Explore Early Diagnosis Biomarkers of Breast Cancer, Lung Cancer and Ovarian Cancer

  • Luo, Lu (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Dong, Li-You (Quarantine of Animals and Plants, Sichuan Agricultural University) ;
  • Yan, Qi-Gui (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Cao, San-Jie (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wen, Xin-Tian (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Huang, Yong (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Huang, Xiao-Bo (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wu, Rui (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Ma, Xiao-Ping (College of Veterinary Medicine, Sichuan Agricultural University)
  • 발행 : 2014.11.06

초록

According to the China tumor registry 2013 annual report, breast cancer, lung cancer, and ovarian cancer are three common cancers in China nowadays, with high mortality due to the absence of early diagnosis technology. However, proteomics has been widespreadly implanted into every field of life science and medicine as an important part of post-genomics era research. The development of theory and technology in proteomics has provided new ideas and research fields for cancer research. Proteomics can be used not only for elucidating the mechanisms of carcinogenesis focussing on whole proteins of the tissue or cell, but also seeking the biomarkers for diagnosis and therapy of cancer. In this review, we introduce proteomics principles, covering current technology used in exploring early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer.

키워드

참고문헌

  1. Ardekani AM, Liotta LA, Petricoin EF (2002). Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn, 2, 312-20. https://doi.org/10.1586/14737159.2.4.312
  2. Ando S, Suzuki M, Yamamoto N, Iida T, et al (2004). The prognostic value of both neuron-specific enolase (NSE) and Cyfra21-1 in small cell lung cancer. Anticancer Res, 24, 1941-6.
  3. Aebersold R, Anderson L, Caprioli R, et al (2005). Perspective: a program to improve protein biomarker discovery for cancer. J proteome Res, 4, 1104-9. https://doi.org/10.1021/pr050027n
  4. Andre F, Pusztai L (2006). Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol, 3, 621-32. https://doi.org/10.1038/ncponc0636
  5. Ardizzoni A, Cafferata MA, Tiseo M, et al (2006). Decline in serum carcinoembryonic antigen and cytokeratin 19 fragment during chemotherapy predicts objective response and survival in patients with advanced nonsmall cell lung cancer. Cancer, 107, 2842-9. https://doi.org/10.1002/cncr.22330
  6. Aktas B, Kasimir BS, Wimberger P, et al (2013). Utility of mesothelin, L1CAM and Afamin as biomarkers in primary ovarian cancer. Anticancer Res, 33, 329-36.
  7. Bast Jr R, Xu F, Yu Y, et al (1998). CA 125: the past and the future. Int J Biol Marker, 13, 179-87.
  8. Bailey C, Ueland F, Land G, et al (1998). The malignant potential of small cystic ovarian tumors in women over 50 years of age. Gynecol Oncol, 69, 3-7. https://doi.org/10.1006/gyno.1998.4965
  9. Bonner JA, Sloan JA, Rowland KM, et al (2000). Significance of neuron-specific enolase levels before and during therapy for small cell lung cancer. Clin Cancer Res, 6, 597-601.
  10. Bremnes RM, Sundstrom S, Aasebo U, et al (2003). The value of prognostic factors in small cell lung cancer: results from a randomised multicenter study with minimum 5 year followup. Lung Cancer, 39, 303-13. https://doi.org/10.1016/S0169-5002(02)00508-1
  11. Buccheri G, Torchio P, Ferrigno SD (2003). Clinical equivalence of two cytokeratin markers in non-small cell lung cancer: A study of tissue polypeptide antigen and cytokeratin 19 fragments. Chest J, 124, 622-32. https://doi.org/10.1378/chest.124.2.622
  12. Barlesi F, Gimenez C, Torre JP, et al (2004). Prognostic value of combination of Cyfra 21-1, CEA and NSE in patients with advanced non-small cell lung cancer. Resp Med, 98, 357-62. https://doi.org/10.1016/j.rmed.2003.11.003
  13. Barlesi F, Tchouhadjian C, Doddoli C, et al (2005). CYFRA 21-1 level predicts survival in non-small-cell lung cancer patients receiving gefitinib as third-line therapy. Br J Cancer, 92, 13-4. https://doi.org/10.1038/sj.bjc.6602296
  14. Bensalah K, Montorsi F, Shariat SF (2007). Challenges of cancer biomarker profiling. Eur Urol, 52, 1601-9. https://doi.org/10.1016/j.eururo.2007.09.036
  15. Bertucci F, Goncalyes A (2008). Clinical proteomics and breast cancer: strategies for diagnostic and therapeutic biomarker discovery. Future Med, 271-87.
  16. Byrd K, Bateman N, Wang G, et al (2014). Correlation of survival-stratified proteomic and curated gene data reveal a three protein biomarker panel that predicts long-term survival of patients with primary epithelial ovarian cancer. 45th Annual Meeting on Women's Cancer: Sgo.
  17. Clarke W, Zhang Z, Chan DW (2003). The application of clinical proteomics to cancer and other diseases. Clin Chem Lab Med, 41, 1562-70.
  18. Chubak J, Boudreau DM, Fishman PA, et al (2010). Cost of breast-related care in the year following false positive screening mammograms. Med Care, 48, 815. https://doi.org/10.1097/MLR.0b013e3181e57918
  19. Croswell JM, Baker SG, Marcus PM, et al (2010). Cumulative incidence of false-positive test results in lung cancer screening a randomized trial. Ann Intern Med, 152, 505-12. https://doi.org/10.7326/0003-4819-152-8-201004200-00007
  20. Chaffer CL, Weinberg RA (2011). A perspective on cancer cell metastasis. Sci, 331, 1559-64. https://doi.org/10.1126/science.1203543
  21. Collinson F, Hutchinson M, Craven RA, et al (2013). Predicting response to bevacizumab in ovarian cancer: a panel of potential biomarkers informing treatment selection. Clin Cancer Res, 19, 5227-39. https://doi.org/10.1158/1078-0432.CCR-13-0489
  22. Cho WC (2014). Proteomics in translational cancer research: biomarker discovery for clinical applications. Expert Rev Proteomics, 11, 131-3. https://doi.org/10.1586/14789450.2014.899908
  23. Chambers AG, Percy AJ, Simon R, et al (2014). MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Rev Proteomics, 11, 1-12. https://doi.org/10.1586/14789450.2014.871497
  24. Dove A (1999). Proteomics: translating genomics into products? Nat Biotechnol, 17, 233-6. https://doi.org/10.1038/6972
  25. Daly MB, Ozols RF (2002). The search for predictive patterns in ovarian cancer: proteomics meets bioinformatics. Cancer Cell, 1, 111-2. https://doi.org/10.1016/S1535-6108(02)00037-5
  26. Davis CD, Milner J (2004). Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutation Res, 551, 51-64. https://doi.org/10.1016/j.mrfmmm.2004.01.012
  27. Everley PA, Krijgsveld J, Zetter BR, et al (2004). Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics, 3, 729-35. https://doi.org/10.1074/mcp.M400021-MCP200
  28. Ferrigno D, Buccheri G, Giordano C (2003). Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer, 41, 311-20. https://doi.org/10.1016/S0169-5002(03)00232-0
  29. Fournier F, Guo R, Gardner EM, et al (2009). Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Accounts Chem Res, 42, 1322-31. https://doi.org/10.1021/ar900074p
  30. Faley SL, Copland M, Wlodkowic D, et al (2009). Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip, 9, 2659-64. https://doi.org/10.1039/b902083g
  31. Fotopoulou C, Zang R, Gultekin M, et al (2013). Value of tertiary cytoreductive surgery in epithelial ovarian cancer: an international multicenter evaluation, Ann Surg Oncol, 20, 1348-54. https://doi.org/10.1245/s10434-012-2673-z
  32. Granville CA, Dennis PA (2005). An overview of lung cancer genomics and proteomics. AM J Resp Cell Mol, 32, 169-76. https://doi.org/10.1165/rcmb.F290
  33. Galvao E, Martins L, Ibiapina J, et al (2011). Breast cancer proteomics: a review for clinicians. J Cancer Res Clin, 137, 915-25. https://doi.org/10.1007/s00432-011-0978-0
  34. Gupta S, Venkatesh A, Ray S, et al (2014). Challenges and prospects for biomarker research: a current perspective from developing world. BBA-Proteins Proteom, 1844, 899-908. https://doi.org/10.1016/j.bbapap.2013.12.020
  35. Hatzakis KD, Froudarakis ME, Bouros D, et al (2002). Prognostic value of serum tumor markers in patients with lung cancer. Resp, 69, 25-9. https://doi.org/10.1159/000049366
  36. Hondermarck H (2003). Breast cancer when proteomics challenges biological complexity. Mol Cell Proteom, 2, 281-91.
  37. Holdenrieder S, Stieber P, von Pawel J, et al (2004). Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res, 10, 5981-7. https://doi.org/10.1158/1078-0432.CCR-04-0625
  38. Haab BB (2005). Antibody arrays in cancer research. Mol Cell Proteomics, 4, 377-83. https://doi.org/10.1074/mcp.M500010-MCP200
  39. Huang LJ, Chen SX, Huang Y, et al (2006). Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung cancer, 54, 87-94. https://doi.org/10.1016/j.lungcan.2006.06.011
  40. He P, Naka T, Serada S, et al (2007). Proteomics-based identification of $\alpha$-enolase as a tumor antigen in non-small lung cancer. Cancer Sci, 98, 1234-40. https://doi.org/10.1111/j.1349-7006.2007.00509.x
  41. Indovina P, Marcelli E, Pentimalli F, et al (2013). Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrometry Rev, 32, 129-42. https://doi.org/10.1002/mas.21355
  42. Jamal A, Bray F, Center MM, et al (2011). Global cancer statistics. Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  43. Kulpa J, Wojcik E, Radkowski A, et al (1999). CYFRA 21-1, TPA-M, TPS, SCC-Ag and CEA in patients with squamous cell lung cancer and in chemical industry workers as a reference group. Anticancer Res, 20, 5035-40.
  44. Kashiwabara K, Nakamura H, Esaki T (2000). Prognosis in bronchogenic squamous cell carcinoma groups divided according to serum squamous cell carcinoma-related antigen and cytokeratin 19 fragment levels. Clin Chim Acta, 294, 105-13. https://doi.org/10.1016/S0009-8981(99)00247-8
  45. Kulpa J, Wojcik E, Reinfuss M, et al (2002). Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin Chem, 48, 1931-7.
  46. Kosari F, Asmann YW, Cheville JC, et al (2002). Cysteine-rich Secretory Protein-3 a Potential Biomarker for Prostate Cancer. Cancer Epidem Biomar, 11, 1419-26.
  47. Khatcheressian JL, Wolff AC, Smith TJ, et al (2006). American society of clinical oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol, 24, 5091-7. https://doi.org/10.1200/JCO.2006.08.8575
  48. Kolch W, Pitt A (2010). Functional proteomics to dissect tyrosine kinase signaling pathways in cancer. Nat Rev Cancer, 10, 618-29. https://doi.org/10.1038/nrc2900
  49. Karimi P, Shahrokni A, Nezami RM (2014). Implementation of proteomics for cancer research: past, present, and future. Asian Pac J Cancer Prev, 15, 2433. https://doi.org/10.7314/APJCP.2014.15.6.2433
  50. Levine D, Gosink B, Wolf S, et al (1992). Simple adnexal cysts: the natural history in postmenopausal women. Radiology, 184, 653-9. https://doi.org/10.1148/radiology.184.3.1509047
  51. Luo L-Y, Katsaros D, Scorilas A, et al (2003). The serum concentration of human kallikrein 10 represents a novel biomarker for ovarian cancer diagnosis and prognosis. Cancer Res, 63, 807-11.
  52. Ludwig JA, Weinstein JN (2005). Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer, 5, 845-56. https://doi.org/10.1038/nrc1739
  53. Lee JH, Chang JH (2005). Diagnostic utility of serum and pleural fluid carcinoembryonic antigen, neuron-specific enolase, and cytokeratin 19 fragments in patients with effusions from primary lung cancer. Chest J, 128, 2298-303. https://doi.org/10.1378/chest.128.4.2298
  54. Leppert JT, Pantuck AJ, Figlin RA, et al (2007). The role of molecular markers in the staging of renal cell carcinoma. BJU Int, 99, 1208-11. https://doi.org/10.1111/j.1464-410X.2007.06812.x
  55. Liotta LA, Petricoin E (2011). Cancer biomarkers: closer to delivering on their promise. Cancer Cell, 20, 279-80. https://doi.org/10.1016/j.ccr.2011.08.021
  56. Liu Z, Wang Y, Wang S, et al (2012). Nek2C functions as a tumor promoter in human breast tumorigenesis. Int J Mol Med, 30, 775.
  57. Li L, Xu Y, Yu CY (2012). Proteomics analysis of serum of women with elevated Ca-125 to differentiate malignant from benign ovarian tumors. Asian Pac J Cancer Prev, 13, 3265-70. https://doi.org/10.7314/APJCP.2012.13.7.3265
  58. Leung F, Dimitromanolakis A, Kobayashi H, et al (2013). Folate-receptor 1 (FOLR1) protein is elevated in the serum of ovarian cancer patients. Clin Biochem, 46, 1462-8. https://doi.org/10.1016/j.clinbiochem.2013.03.010
  59. Maeda T, Ueoka H, Tabata M, et al (2000). Prognostic factors in advanced non-small cell lung cancer: elevated serum levels of neuron specific enolase indicate poor prognosis. Jpn J Clin Oncol, 30, 534-41. https://doi.org/10.1093/jjco/hyd139
  60. Mok SC, Chao J, Skates S, et al (2001). Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Nat Cancer Inst, 93, 1458-64. https://doi.org/10.1093/jnci/93.19.1458
  61. Massacesi C, Rocchi M, Marcucci F, et al (2002). Serum tumor markers may precede instrumental response to chemotherapy in patients with metastatic cancer. Int J Biol Marker, 18, 295-300.
  62. Muley T, Dienemann H, Ebert W (2002). Increased CYFRA 21-1 and CEA levels are negative predictors of outcome in p-stage I NSCLC. Anticancer Res, 23, 4085-93.
  63. Molina R, Filella X, Auge J, et al (2003). Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with nonsmall cell lung cancer as an aid in histological diagnosis and prognosis. Tumor Biol, 24, 209-18. https://doi.org/10.1159/000074432
  64. Merle P, Janicot H, Filaire M, et al (2003). Early CYFRA 21-1 variation predicts tumor response to chemotherapy and survival in locally advanced non-small cell lung cancer patients. Int J Biol Marker, 19, 310-5.
  65. Muley T, Dienemann H, Ebert W (2004). CYFRA 21-1 and CEA are independent prognostic factors in 153 operated stage I NSCLC patients. Anticancer Res, 24, 1953-6.
  66. Molina R, Filella X, Auge JM(2004). ProGRP: a new biomarker for small cell lung cancer. Clin Biochem, 37, 505-11. https://doi.org/10.1016/j.clinbiochem.2004.05.007
  67. Molina R, AUGE JM, Filella X, et al (2005). Pro-gastrinreleasing peptide (proGRP) in patients with benign and malignant diseases: comparison with CEA, SCC, CYFRA 21-1 and NSE in patients with lung cancer. Anticancer Res, 25, 1773-8.
  68. Nosov V, Su F, Amneus M, et al (2009). Validation of serum biomarkers for detection of early-stage ovarian cancer. Am J Obstet Gynecol, 200, 1-5. https://doi.org/10.1016/j.ajog.2008.09.007
  69. Marzinke MA, Choi CH, Chen L, et al (2013). Proteomic analysis of temporally stimulated ovarian cancer cells for biomarker discovery. Mol Cell Proteomics, 12, 356-68. https://doi.org/10.1074/mcp.M112.019521
  70. Okada M, Nishio W, Sakamoto T, et al (2004). Prognostic significance of perioperative serum carcinoembryonic antigen in non-small cell lung cancer: analysis of 1,000 consecutive resections for clinical stage I disease. Ann Thoracic Surg, 78, 216-21. https://doi.org/10.1016/j.athoracsur.2004.02.009
  71. Okamoto T, Nakamura T, Ikeda J, et al (2005). Serum carcinoembryonic antigen as a predictive marker for sensitivity to gefitinib in advanced non-small cell lung cancer. Eur J Cancer, 41, 1286-90. https://doi.org/10.1016/j.ejca.2005.03.011
  72. Omenn GS, Menon R, Zhang Y (2013). Innovations in proteomic profiling of cancers: Alternative splice variants as a new class of cancer biomarker candidates and bridging of proteomics with structural biology. J Proteomics, 90, 28-37. https://doi.org/10.1016/j.jprot.2013.04.007
  73. Pujol J-L, Boher J-M, Grenier J, et al (2001). Cyfra 21-1, neuron specific enolase and prognosis of non-small cell lung cancer: prospective study in 621 patients. Lung Cancer, 31, 221-31. https://doi.org/10.1016/S0169-5002(00)00186-0
  74. Panisko EA, Conrads TP, Goshe MB, et al (2002). The postgenomic age: characterization of proteomes. Exp Hematol, 30, 97-107. https://doi.org/10.1016/S0301-472X(01)00771-8
  75. Pollan M, Varela G, Torres A, et al (2003). Clinical value of p53, c-erbB-2, CEA and CA125 regarding relapse, metastasis and death in respectable non-small cell lung cancer. Int J Cancer, 107, 781-90. https://doi.org/10.1002/ijc.11472
  76. Pujol J-L, Quantin X, Jacot W, et al (2003). Neuroendocrine and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer, 39, 131-8. https://doi.org/10.1016/S0169-5002(02)00513-5
  77. Pujol J, Molinier O, Ebert W, et al (2004). CYFRA 21-1 is a prognostic determinant in non-small-cell lung cancer: results of a meta-analysis in 2063 patients. Br J Cancer, 90, 2097-105.
  78. Polanski M, Anderson NL (2007). A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights, 1, 1-48.
  79. Planque C, Kulasingam V, Smith CR, et al (2009). Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics, 8, 2746-58. https://doi.org/10.1074/mcp.M900134-MCP200
  80. Pavlou MP, Diamandis EP (2010). The cancer cell secretome: a good source for discovering biomarkers? J Proteomics, 73, 1896-906. https://doi.org/10.1016/j.jprot.2010.04.003
  81. Reinmuth N, Brandt B, Semik M, et al (2002). Prognostic impact of Cyfra21-1 and other serum markers in completely resected non-small cell lung cancer. Lung Cancer, 36, 265-70. https://doi.org/10.1016/S0169-5002(02)00009-0
  82. Sun SS, Hsieh JF, Tsai SC, et al (2000). Cytokeratin fragment 19 and squamous cell carcinoma antigen for early prediction of recurrence of squamous cell lung carcinoma. Am J Clin Oncol, 23, 241-3. https://doi.org/10.1097/00000421-200006000-00006
  83. Salgia R, Harpole D, Herndon 2nd J, et al (2000). Role of serum tumor markers CA 125 and CEA in non-small cell lung cancer. Anticancer Res, 21, 1241-6.
  84. Sun SS, Hsieh JF, Tsai SC, et al (2000). Tissue polypeptidespecific antigen and carcinoembryonic antigen for early prediction of recurrence in lung adenocarcinoma. Am J Clin Oncol, 23, 605-8. https://doi.org/10.1097/00000421-200012000-00016
  85. Shibayama T, Ueoka H, Nishii K, et al (2001). Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of smallcell lung cancer (SCLC). Lung Cancer, 32, 61-9. https://doi.org/10.1016/S0169-5002(00)00205-1
  86. Schneider J, Philipp M, Salewski L, et al (2002). Pro-gastrinreleasing peptide (ProGRP) and neuron specific enolase (NSE) in therapy control of patients with small-cell lung cancer. Clin Lab, 49, 35-42.
  87. Satoh H, Ishikawa H, Kurishima K, et al (2002). Cut-off levels of NSE to differentiate SCLC from NSCLC. Oncol Rep, 9, 581-3.
  88. Schneider J, Philipp M, Velcovsky HG, et al (2002). Progastrin-releasing peptide (ProGRP), neuron specific enolase (NSE), carcinoembryonic antigen (CEA) and cytokeratin 19-fragments (CYFRA 21-1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res, 23, 885-93.
  89. Sakao Y, Nakazono T, Sakuragi T, et al (2004). Predictive factors for survival in surgically resected clinical IA peripheral adenocarcinoma of the lung. Ann Thorac Surg, 77, 1157-61. https://doi.org/10.1016/j.athoracsur.2003.09.055
  90. Schneider J (2006). Tumor markers in detection of lung cancer. Adv Clin Chem, 42, 1-41. https://doi.org/10.1016/S0065-2423(06)42001-1
  91. Schulz KR, Danna EA, Krutzik PO, et al(2007). Single-Cell Phospho-Protein analysis by flow cytometry. Curr Protoc Immunol. 8.17. 1-8.
  92. Sung HJ, Cho JY (2008). Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep, 41, 615-25. https://doi.org/10.5483/BMBRep.2008.41.9.615
  93. Sohn J, Do K, Liu S, et al (2013). Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann Oncol, 24, 2522-6. https://doi.org/10.1093/annonc/mdt248
  94. Tomita M, Matsuzaki Y, Edagawa M, et al (2004). Prognostic significance of preoperative serum carcinoembryonic antigen level in lung adenocarcinoma but not squamous cell carcinoma. Ann Thorac Cardiovas,10, 76-80.
  95. Taguchi A, Politi K, Pitteri SJ, et al (2011). Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell, 20, 289-99. https://doi.org/10.1016/j.ccr.2011.08.007
  96. Tang HY, Beer LA, Tanyi JL, et al (2013). Protein isoformspecific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer. J Proteomics, 89, 165-78. https://doi.org/10.1016/j.jprot.2013.06.016
  97. Tang Y, Mackey J, Lai R, et al (2013). Quantitative proteomic analysis of HER2 normal and overexpressing MCF-7 breast cancer cells revealed proteomic changes accompanied with HER2 gene amplification. J Proteomics, 91, 200-9. https://doi.org/10.1016/j.jprot.2013.06.034
  98. Teng P, Wang G, Hood B, et al (2014). Identification of candidate circulating cisplatin-resistant biomarkers from epithelial ovarian carcinoma cell secretomes. Br J Cancer, 110, 123-32. https://doi.org/10.1038/bjc.2013.687
  99. Tiss A, Timms J, Menon U, et al (2014). Proteomics approaches towards early detection and diagnosis of ovarian cancer. J Immunother Cancer, 2, 5. https://doi.org/10.1186/2051-1426-2-5
  100. Valentin L, Skoog L, Epstein E (2003). Frequency and type of adnexal lesions in autopsy material from postmenopausal women: ultrasound study with histological correlation. Ultrasound Obst Gyn, 22, 284-9. https://doi.org/10.1002/uog.212
  101. Vollmer RT, Govindan R, Graziano SL, et al (2003). Serum CYFRA 21-1 in advanced stage non-small cell lung cancer: an early measure of response. Clin Cancer Res, 9, 1728-33.
  102. Van Simaeys D, Turek D, Champanhac C, et al (2014). Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem, 86, 4521-7. https://doi.org/10.1021/ac500466x
  103. Wilkins MR, Sanchez J-C, Gooley AA, et al (1996). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng, 13, 19-50. https://doi.org/10.1080/02648725.1996.10647923
  104. Wakeley KE, Grendys EC (2000). Reproductive technologies and risk of ovarian cancer. Curr Opin Obstet Gyn, 12, 43-7. https://doi.org/10.1097/00001703-200002000-00008
  105. Wulfkuhle JD, Liotta LA, Petricoin EF (2003). Proteomic applications for the early detection of cancer. Nat Rev Cancer, 3, 267-75. https://doi.org/10.1038/nrc1043
  106. Welsh JB, Sapinoso LM, Kern SG, et al (2003). Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. P Natl Acad Sci, 100, 3410-5. https://doi.org/10.1073/pnas.0530278100
  107. Wu CC, Chien KY, Tsang NM, et al (2005). Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics, 5, 3173-82. https://doi.org/10.1002/pmic.200401133
  108. Wolf-Yadlin A, Sevecka M, MacBeath G (2009). Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol, 13, 398-405. https://doi.org/10.1016/j.cbpa.2009.06.027
  109. Wu CC, Hsu CW, Chen CD, et al (2010). Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics, 9, 1100-17. https://doi.org/10.1074/mcp.M900398-MCP200
  110. Washam C, Byrum S, Leitzel K, et al (2011). P4-16-01: Proteomic analysis of patient plasma identifies parathyroid hormone related protein (PTHrP12-48) as a potential biomarker of breast cancer bone metastasis. Cancer Res, 71.
  111. Xiao T, Ying W, Li L, et al (2005). An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics, 4, 1480-6. https://doi.org/10.1074/mcp.M500055-MCP200
  112. Li XJ, Wu QF, He DL, et al (2013). Proteomic profiling of serum from stage I lung squamous cell carcinoma patients. Asian Pac J Cancer Prev, 14, 4, 2273-6. https://doi.org/10.7314/APJCP.2013.14.4.2273
  113. Yu CJ, Wang CI, Chien KY, et al (2013). Quantitative proteomics reveals regulation of KPNA2 and its potential novel cargo proteins in non-small cell lung cancer. FASEB J, 27, 812..

피인용 문헌

  1. Tumor Infiltrating Lymphocytes in Ovarian Cancer vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3635
  2. MiR-133a is downregulated in non-small cell lung cancer: a study of clinical significance vol.20, pp.1, 2015, https://doi.org/10.1186/s40001-015-0139-z
  3. MicroRNA-155 Hallmarks Promising Accuracy for the Diagnosis of Various Carcinomas: Results from a Meta-Analysis vol.2015, pp.1875-8630, 2015, https://doi.org/10.1155/2015/327287
  4. Optimizing the Detection of Circulating Markers to Aid in Early Lung Cancer Detection vol.8, pp.7, 2016, https://doi.org/10.3390/cancers8070061
  5. Prognostic Value of microRNA-133a Expression and Its Clinicopathologic Significance in Non-Small Cell Lung Cancer: A Comprehensive Study Based on Meta-Analysis and the TCGA Database vol.41, pp.12, 2018, https://doi.org/10.1159/000492343