DOI QR코드

DOI QR Code

Extraction/Separation of Cobalt by Solvent Extraction: A Review

용매추출에 의한 코발트 분리 기술

  • Swain, Basudev (Institute for Advanced Engineering, Advanced Materials & Processing Center) ;
  • Cho, Sung-Soo (Institute for Advanced Engineering, Advanced Materials & Processing Center) ;
  • Lee, Gae Ho (Department of Chemistry, Chungnam National University) ;
  • Lee, Chan Gi (Institute for Advanced Engineering, Advanced Materials & Processing Center) ;
  • Uhm, Sunghyun (Institute for Advanced Engineering, Advanced Materials & Processing Center)
  • ;
  • 조성수 (고등기술연구원 신소재공정센터) ;
  • 이계호 (충남대학교 화학과) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 엄성현 (고등기술연구원 신소재공정센터)
  • Received : 2015.11.13
  • Accepted : 2015.11.18
  • Published : 2015.12.10

Abstract

Extraction/separation of cobalt by solvent extraction is reviewed. Separation of cobalt using various reagents and also cobalt recovery from scrap using commercial extractant were analyzed. The separation ability for cobalt followed the order of phosphinic > phosphonic > phosphoric acid due to the increasing stabilization of tetrahedral coordination of cobalt complexes with the extractant in the organic phase. Depending upon the solution composition, commercial extractants like Cyanex 272, D2EPHA and PC 88A should primarily be used for commercial extraction processes and also the efficient management of their combination could address various separation issues associated with cobalt bearing scrap.

용매추출에 의한 코발트 분리 기술에 대해 리뷰하였고 특히 다양한 시약을 사용한 코발트의 분리 및 상용 추출용제를 사용하여 스크랩으로부터의 코발트 회수기술에 대하여 분석하였다. 코발트 분리 능력은 phosphinic > phosphonic > phosphoric acid 순으로 정리되며, 이것은 유기상내에 추출용제와 존재하는 코발트의 사면체 배위 화합물의 안정성이 증가하기 때문이다. 용매의 조성에 따라 달라지지만 주로 Cyanex 272, D2EPHA 및 PC 88A와 같은 상용 추출용제 등이 상용 추출 공정에서 우선적으로 사용되어야 하며, 다양한 조합을 효과적으로 관리한다면 코발트 함유 스크랩과 관련한 다양한 분리기술 문제점들을 해결할 수 있을 것이다.

Keywords

References

  1. B. Swain, Separation of Cobalt and Lithium from Lithium-ion Battery Industry Waste by Solvent Extraction and Supported Liquid Membrane: A Comparative Study, Thesis submitted to the committee of Department of chemistry, Graduate School Chungnam National University in partial fulfillment of the requirement for the degree of Doctor of Philosophy conferred in August (2007), Chapter 2, 10-18 (2007).
  2. A. G. Kholmogorov, O. N. Kononova, V. V. Patrushev, E. V. Mikhlina, Y. S. Kononov, and G. L. Pashkov, Ion exchange purification of manganese sulphate solutions from cobalt, Hydrometallurgy, 45(3), 261-269 (1997). https://doi.org/10.1016/S0304-386X(96)00083-7
  3. F. D. Mendes and A. H. Martins, Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin, Miner. Eng., 18(9), 945-954 (2005). https://doi.org/10.1016/j.mineng.2004.12.009
  4. Z. Zainol and M. J. Nicol, Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings, Hydrometallurgy, 96(4) 283-287 (2009). https://doi.org/10.1016/j.hydromet.2008.11.005
  5. C. G. Coe, J. F. Kirner, R. Pierantozzi et. al., Divalent cation exchanged lithium X zeolite for nitrogen adsorption, U.S patent no 5,417,957, May 23 (1995), applied Oct 5 (1992).
  6. G. J. Sevenich and J. S. Fritz, Addition of complexing agents in ion chromatography for separation of polyvalent metal ions, Anal. Chem., 55(1), 12-16 (1983). https://doi.org/10.1021/ac00252a007
  7. A. Zvezdov and K. Ishigure, The effect of corrosion particles present in water solutions on the behavior of strong acid cation-exchange resins during the process of cobalt removal, Desalination, 154(2), 153-160 (2003). https://doi.org/10.1016/S0011-9164(03)80016-4
  8. B. Swain, J. Jeong, J. C. Lee, and G. H. Lee, Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: A mathematical model correlation to predict optimum operational conditions, Sep. Purif. Technol., 63, 360-369 (2008). https://doi.org/10.1016/j.seppur.2008.05.022
  9. B. Swain, J. Jeong, J. C. Lee, G. H. Lee, and J. S. Sohn, Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, J. Power Sources, 167(2), 536-544 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.046
  10. B. Swain, J. Jeong, J. C. Lee, and G. H. Lee, Separation of cobalt and lithium from mixed sulfate solution using Na-cyanex 272, Hydrometallurgy, 84(3-4) 130-138 (2006). https://doi.org/10.1016/j.hydromet.2006.03.061
  11. B. Swain, J. Jeong, M. S. Kim, J. C. Lee, and J. S. Sohn, Recovery of cobalt from waste cathode active material generated in manufacturing lithium ion batteries by hydrometallurgical process, J. Korean Inst. Resources Recycling, 14(6), 28-36 (2005).
  12. W. Gerhartz, B. Elvers, M. Ravenscroft, J. F. Rounsaville, and Gail Schulz, Ullmann's Encyclopedia of industrial chemistry, Volume B3, Fifth edition, pp. 6-44-6-50.
  13. J. Rydberg, M. Cox, C. Musikas, and G. R. Chopin, Solvent Extraction Principles and Practice, Second Edition, Marcel Dekker (2004).
  14. A. G. Kholmogorov, O. N. Kononova, V. V. Patrushev, E. V. Mikhlina, Y. S. Kononov, and G. L. Pashkov, Ion exchange purification of manganese sulphate solutions from cobalt, Hydrometallurgy, 45(3), 261-269 (1997). https://doi.org/10.1016/S0304-386X(96)00083-7
  15. A. Zvezdov and K. Ishigure, The effect of corrosion particles presents in water solutions on the behavior of strong acid cation-exchange resins during the process of cobalt removal, Desalination, 154(2), 153-160 (2003). https://doi.org/10.1016/S0011-9164(03)80016-4
  16. M. Ahuja and A. K. Rai, Adsorption studies with some chelating ion exchange resins derived from guaran, Carbohydrate Polymers, 33(1), 57-62 (1997). https://doi.org/10.1016/S0144-8617(96)00124-5
  17. N. A. Petranovic and M. V. Sisic, Adsorption and ion exchange phenomena on synthetic zeolite 4A in alkali nitrates melt, J. Inorg. Nucl. Chem., 31(2), 551-557 (1969). https://doi.org/10.1016/0022-1902(69)80498-7
  18. C. G. Coe, J. F. Kirner, R. Pierantozzi, et. al., U.S patent no 5,417,957, May 23, 1995, Applied Oct 5, 1992, Divalent cation exchanged lithium X zeolite for nitrogen adsorption.
  19. J. P. Quinche and S. Quinche-Sax, Chromatographie de deplacement sur echangeur d'ions des cations $Mg^{2+},\;Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Zn^{2+},\;Ni^{2+},\;Be^{2+},\;Al^{3+},\;Cu^{2+},\;Ga^{3+},\;UO_2^^{2+},\;VO^{2+}\;et\;Fe^{3+} $ et etude des possibilites de dosages simultanes, J. Chromatogr., 32, 162-177 (1968). https://doi.org/10.1016/S0021-9673(01)80478-7
  20. P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, 259-271 (1998). https://doi.org/10.1016/S0304-386X(97)00050-9
  21. T. C. Huang and T. H. Tsai, Separation of cobalt and nickel ions in lithium nitrate solution by solvent extraction and liquid membrane with HEHEHP kerosene solution, Acta Chemica Scandinavica, 45, 383-391 (1991). https://doi.org/10.3891/acta.chem.scand.45-0383
  22. J. S. Preston and A. C. D. Preez, Solvent extraction of nickel and cobalt by mixtures of carboxylic acids and pyridinecarboxylate esters, Solvent Extr. Ion Exc., 13(3), 465-494 (1995). https://doi.org/10.1080/07366299508918286
  23. K. Yoshizuka, Y. Sakomoto, Y. Baba, and K. Inoue, Distribution equilibria in the adsorption of cobalt(II) and nickel(II) on Levextrel resin containing Cyanex 272, Hydrometallurgy, 23, 309-318 (1990). https://doi.org/10.1016/0304-386X(90)90012-Q
  24. N. B. Devi, K. C. Nathsarma, and V. Chakravortty, Separation and recovery of cobalt(II) and nickel(II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272, Hydrometallurgy, 49, 47-61 (1998). https://doi.org/10.1016/S0304-386X(97)00073-X
  25. P. Zhang, T. Yokoyama, T. M. Suzuki, and K. Inoue, The synergistic extraction of nickel and cobalt with a mixture of di(2-ethylhexyl) phosphoric acid and 5-dodecylsalicylaldoxime, Hydrometallurgy, 61, 223-227 (2001). https://doi.org/10.1016/S0304-386X(01)00174-8
  26. S. Akita, L. P. Castillo, S. Nii, K. Takahashi, and H. Takeuchi, Separation of Co(II)/Ni(II) via micellar-enhanced ultrafiltration using organophosphorus acid extractant solubilized by nonionic surfactant, J. Membr. Sci., 162, 111-117 (1999). https://doi.org/10.1016/S0376-7388(99)00128-3
  27. N. V. Thakur, Extraction studies of base metals (Mn, Cu, Co and Ni) using the extractant 2-ethylhexyl 2-ethylhexyl phosphonic acid, PC88A, Hydrometallurgy, 48, 125-131 (1998). https://doi.org/10.1016/S0304-386X(97)00061-3
  28. R. Grimm and Z. Kolarrik, Acidic organophosphorus extractants-XIX Extraction of Cu(II), Ni(II), Zn(II) and Cd(II) by DI(2-ethylhexyl) phosphoric acid, J. Inorg. Nucl. Chem., 36, 189-192 (1974). https://doi.org/10.1016/0022-1902(74)80679-2
  29. J. E. Barnes, J. H. Setchfield, and G. O. R. Williams, Solvent extraction with di(2-ethylhexyl) phosphoric acid; A correlation between selectivity and the structure of the complex, J. Inorg. Nucl. Chem., 38, 1065-1067 (1976). https://doi.org/10.1016/0022-1902(76)80031-0
  30. S. Ide and M. Takagi, Liquid-liquid extraction of transition metal ions with N-Phenyl-N'-(2-butylthiophenyl) thiourea, Anal. Sci., 6(4), 599-603 (1990). https://doi.org/10.2116/analsci.6.599
  31. S. Oshima, N. Hirayama, K. Kubono, H. Kokusen, and T. Honjo, Ion-pair extraction behavior of divalent transition metal cations as charged complexes with N,N'-bis(2-pyridylmethylidene)-1,2-diiminoethane and its analogues, Anal. Chim. Acta, 441, 157-164 (2001). https://doi.org/10.1016/S0003-2670(01)01078-9
  32. N. Hirayama, N. Ichitani, K. Kubono, Y. Matsuoka, H. Kokusen, and T. Honjo, Extraction behavior of divalent first row transition metal ions with N,N'-bis(2-hydroxyphenylmethyl)-N,N'-bis(2-pyridylmethyl)-1,2 ethanediamine and its derivatives, Talanta, 44, 2019-2025 (1997). https://doi.org/10.1016/S0039-9140(96)02200-X
  33. M. Merdivan, A. Gungor, S. Savasci, and R. S. Aygun, Extraction of some transition metals with N,N-dibutyl-N'-benzoylthiourea into molten paraffin at $65^{\circ}C$, Talanta, 53, 141-146 (2000). https://doi.org/10.1016/S0039-9140(00)00464-1
  34. P. E. Tsakiridis and S. L. Agatzini, Process for the recovery of cobalt and nickel in the presence of magnesium from sulfate solutions by Cyanex 272 and Cyanex 302, Miner. Eng., 17(7-8), 913-923 (2004). https://doi.org/10.1016/j.mineng.2004.03.010
  35. P. E. Tsakiridis and S. L. Agatzini, Process for the recovery of cobalt and nickel in the presence of magnesium and calcium from sulfate solutions by Versatic 10 and Cyanex 272, Miner. Eng., 17(4), 535-543 (2004). https://doi.org/10.1016/j.mineng.2003.12.003
  36. K. Tait, Cobalt-nickel separation: the extraction of cobalt(II) and nickel(II) by Cyanex 301, Cyanex 302 and Cyanex 272, Hydrometallurgy, 32(3), 365-372 (1993). https://doi.org/10.1016/0304-386X(93)90047-H
  37. D. Darvishi, D. F. Haghshenas, E. Alamdari, S. K. Sadrnezhaad, and M. Halali, Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt and nickel by D2EHPA, Hydrometallurgy, 77(3-4), 227-238 (2005). https://doi.org/10.1016/j.hydromet.2005.02.002
  38. K. H. Park, S. H. Jung, C. W. Nam, S. M. Shin, and D. S. Kim, Solvent extraction of cobalt by Cyanex 272 from sulfuric acid solution containing nickel and cobalt, J. Kor. Inst. Met. Mater., 42(11), 947-951 (2004).
  39. K. Sarangi, R. B. Reddy, and R. P. Das, Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272. Separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures, Hydrometallurgy, 52(3), 253-265 (1999). https://doi.org/10.1016/S0304-386X(99)00025-0
  40. D. V. Koladkar and P. M. Dhadke, Cobalt-nickel separation: the extraction of cobalt(ii) and nickel(ii) with bis(2-ethylhexyl) phosphinic acid (pia-8) in toluene, Solvent Extr. Ion Exc., 19(6), 1059-1071 (2001). https://doi.org/10.1081/SEI-100107619
  41. B. Gupta, A. Deep, and S. N. Tandon, Recovery of cobalt from secondary sector using extraction in Cyanex 923, Indian Journal of Chemistry, Section A: Inorganic, Bio-inorganic, Physical, Theoretical & Analytical Chemistry, 42A(12), 2954-2958 (2003).
  42. B. Gupta, A. Deep, and S. N. Tandon, Extraction and separation of some 3d transition metal ions using Cyanex 923, Solvent Extr. Ion Exc., 20(1), 81-96 (2002). https://doi.org/10.1081/SEI-100108826
  43. C. Bourget, B. Jakovljevic, and D. Nucciarone, Cyanex 301 binary extractant systems in cobalt/nickel recovery from acidic sulfate solutions, Hydrometallurgy, 77(3-4), 203-218 (2005). https://doi.org/10.1016/j.hydromet.2004.12.005
  44. B. Jakovljevic, C. Bourget, and D. Nucciarone, Cyanex 301 binary extractant systems in cobalt/nickel recovery from acidic chloride solutions, Hydrometallurgy, 75(1-4), 25-36 (2004). https://doi.org/10.1016/j.hydromet.2004.06.006
  45. Tsakiridis and S. L. Agatzini, Simultaneous solvent extraction of cobalt and nickel in the presence of manganese and magnesium from sulfate solutions by Cyanex 301, Hydrometallurgy, 72(3-4), 269-278 (2004). https://doi.org/10.1016/S0304-386X(03)00180-4
  46. N. B. Devi, K. C. Nathsarma, and V. Chakravortty, Separation and recovery of cobalt(II) and nickel(II) from sulfate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272, Hydrometallurgy, 49(1-2), 47-61 (1998). https://doi.org/10.1016/S0304-386X(97)00073-X
  47. N. B. Devi, K. C. Nathsarma, and V. Chakravortty, Sodium salts of D2EHPA, PC-88A and Cyanex-272 and their mixtures as extractants for cobalt(II), Hydrometallurgy, 34(3), 331-42 (1994). https://doi.org/10.1016/0304-386X(94)90070-1
  48. K. C. Nathsarma and P. V. R. B. Sarma, Recovery of cobalt from ammoniacal solution using Di(2-ethylhexyl)phosphoric acid, Publications of the Australasian Institute of Mining and Metallurgy, (9/92) Extractive Metallurgy of Gold and Base Metals, 271-275 (1992).
  49. K. Inoue and H. Imura, The Kinetics of the Solvent Extraction of Cobalt (I) and Lead (II) With Versatic Acid, Hydrometallurgy, 17(22), 215-228 (2003).
  50. L. Luo, J. Wei, G. Wu, F. Toyohisa, and S. Atsushi, Extraction studies of cobalt (II) and nickel (II) from chloride solution using PC88A, Trans. Nonferrous Met. Soc. China, 16(3), 687-692 (2006). https://doi.org/10.1016/S1003-6326(06)60122-2
  51. J. W. Ahn, K. H. Park, and J. S. Shon, Separation of iron, manganese and zinc by solvent extraction with alamine 336 from chloride solutions containing cobalt and nickel, J. Kor. Inst. Met. Mater., 41(6), 383-388 (2003).
  52. A. Gupta and S. M. Khopkar, Solvent extraction separation of cobalt (II) with hexaacetatocalix(6)arene, Talanta, 42(10) 1493-1496 (1995). https://doi.org/10.1016/0039-9140(95)01600-G
  53. D. Preez, A. C. Preston, J. S. Mintek, and R. S. Afr, Separation of nickel and cobalt from calcium, magnesium and manganese by solvent extraction with synergistic mixtures of carboxylic acids, Journal of the South African Institute of Mining & Metallurgy, 104(6), 333-338 (2004).
  54. X. Zhou, H. Wang, Y. Xia, and T. Zhu, Solvent extractive separation of cobalt, iron and manganese with quaternary ammonium chloride, Zhongguo Youse Jinshu Xuebao, 10(5), 723-727 (2000).
  55. W. A. Rickelton, Recovery of cobalt from ammoniacal solutions containing cobalt and nickel. American Cyanamid Co., USA). U.S. (1986), 5 pp. CODEN: USXXAM US 4619816 A 19861028 Patent written in English. Application: US 85-799230 19851121.
  56. P. Liu, Y. Wang, S. Sun, Y. Jinglan, and X. Yu, Kinetics of the extraction of cobalt(II) using CYANEX272(di(2,4,4-trimethylpentyl) phosphinic acid), Shandong Daxue Xuebao Ziran Kexueban, 29(3), 320-325 (1994).
  57. T. Zhu, Comparative study on kinetic behavior of solvent extraction of $Co^{2+}$ and $Ni^{2+}$ with organophosphorus extractants, Huagong Xuebao (Chinese Edition) 44(3), 343-349 (1993).
  58. M. M. Orive, M. A. Azabal, L. A. Fernandez, Madariaga, and J. M. Kim., The recovery of cobalt and nickel from acidic sulfate solutions in the presence of aluminum, Solvent Extr. Ion Exc., 10(5), 787-797 (1992). https://doi.org/10.1080/07366299208918135
  59. F. Xun and J. A.Golding, Solvent extraction of cobalt and nickel in bis(2,4,4-tri-methylpentyl)phosphinic acid, Cyanex-272, Solvent Extr. Ion Exc., 5(2), 205-226 (1987). https://doi.org/10.1080/07366298708918562
  60. W. A. Rickelton, D. S. Flett, and D. W. West, Cobalt-nickel separation by solvent extraction with bis(2,4,4 trimethylpentyl)phosphinic acid, Solvent Extr. Ion Exc., 2(6), 815-838 (1984). https://doi.org/10.1080/07366298408918476
  61. S. Chen, Y. Luo, L. Wang, L. Zhang, and R.Wang, Separation of copper and cobalt from nickel sulphate solution by oranophosphorus mixed extractant, EPD Congress 2005, Proceedings of Sessions and Symposia held during the TMS Annual Meeting, San Francisco, CA, United States, Feb. 13-17 (2005), 437-441 (2005).
  62. D. Maljkovic and Z. Lenhard, The effect of organophosphoric extractant concentration and initial phase volume ratio on cobalt(II) and nickel(II) extraction, International Solvent Extraction Conference, Cape Town, South Africa, Mar. 17-21, 982-987 (2002).
  63. K. Kongolo, M. D. Mwema, A. N. Banza, and E. Gock, Cobalt and zinc recovery from copper sulphate solution by solvent extraction, Miner. Eng., 16(12), 1371-1374 (2003). https://doi.org/10.1016/j.mineng.2003.09.001
  64. D. S. Flett, Cobalt-nickel separation in hydrometallurgy: a review, Chemistry for Sustainable Development, 12, 81-91 (2004).
  65. Brochure cyanex 272, 2008 Cytec Industries Inc., https://www.cytec.com/sites/default/files/datasheets/CYANEX%20272%20Brochure.pdf.
  66. Y. Pranolo and C. Y. Cheng, The Recovery of Cobalt and Lithium from Spent Battery Leach Solutions by Solvent Extraction, AJ Parker CRC for Hydrometallurgy (CSIRO Minerals) report DMR-2624 (2005).
  67. http://pubs.usgs.gov/of/2002/of02-299/of02-299.pdf, Accessed date 09/11/2015.
  68. Y. Qin, R. Man, and X. Yin, Leaching cobalt and stripping aluminium foil from cathode electrode of spent Li-ion batteries by the electrolytic technology, Modern Chemical Industry, 33(8), 49-52 (2013).
  69. Md. Awual, M. Ismael, and T. Yaita, Efficient detection and extraction of cobalt(II) from lithiumion batteries and wastewater by novel composite adsorbent, Sensor. Actuat. B-Chem., 49, 190-198 (2014).
  70. M. Joulie, R. Laucournet, and E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminium oxide based lithium-ion batteries, J. Power Sources, 35, 22-26 (2013).
  71. G. Zeng, S. Luo, and X. Deng, Influence of silver ions on bioleaching of cobalt from spent lithium batteries, Miner. Eng., 49, 40-44 (2013). https://doi.org/10.1016/j.mineng.2013.04.021
  72. M. Jha and A. K. Jha, Recovery of lithium and cobalt from wastelithium ion batteries of mobile phone, Waste Manage., 33(9), 1890-1897 (2013). https://doi.org/10.1016/j.wasman.2013.05.008
  73. L. Li, J. Dunn, and X. J. Zhang, Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233, 180-189 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.089
  74. A. Jha, M. Jha, and A. Kumari, Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant, Separ. Purif. Technol., 104, 160-166 (2013). https://doi.org/10.1016/j.seppur.2012.11.024
  75. H. Zou, E. Gratz, and D. A Apelian, Novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem., 15(5), 1183-1191 (2013). https://doi.org/10.1039/c3gc40182k
  76. A. Fernandes, J. C. Afonso, and A. J. Bourdot Dutra, Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries, J. Power Sources, 220, 286-291 (2012). https://doi.org/10.1016/j.jpowsour.2012.08.011
  77. D. Bertuol, F. Amado, and H. Veit, Recovery of nickel and cobalt from spent NiMH batteries by electrowinning, Chem. Eng. Technol., 35(12), 2084-2092 (2012). https://doi.org/10.1002/ceat.201200283
  78. V. Santos, V. Celante, and M. Lelis, Chemical and electrochemical recycling of the nickel, cobalt, zinc and manganese from the positive electrodes of spent Ni-MH batteries from mobile phones, J. Power Sources, 218, 435-444 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.024
  79. Y. Xiao, X. Zhou, and L. Cao, Recovery of copper and cobalt from spent aerospace material with pollution-free oxidant, Adv. Maters. Res., 476/478(1), 357-362 (2012). https://doi.org/10.4028/www.scientific.net/AMR.476-478.357
  80. D. Mohapatra and K. Park, Selective recovery of Mo, Co and Al from spent $Co/Mo/-Al_2O_3$ catalysts: Effect of calcination temperature, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 42(4), 507-515 (2007). https://doi.org/10.1080/10934520601188409
  81. Y. Liang, The latest development of cobalt recovery process from Co-based alloy scraps, Rare Metals & Cemented Carbides, 37(4), 179, 58-60 (2009).
  82. P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, 259 (1998). https://doi.org/10.1016/S0304-386X(97)00050-9
  83. F. Wu, Recovery of cobalt and lithium from spent lithium-ion secondary batteries, Zhongguo Youse Jinshu Xuebao, 14(4), 697-701 (2004).
  84. B. Swain, J. C. lee, J. Jeong, and G. H. Lee, Separation of cobalt and lithium from mixed sulfate solution using Na-cyanex 272, Hydrometallurgy, 84(3-4), 130-138 (2006). https://doi.org/10.1016/j.hydromet.2006.03.061
  85. B. Swain, J. C. Lee, J. Jeong, and G. H. Lee, Separation of cobalt and lithium from mixed sulfate solution using organophosphorous extractant Na-cyanex 272, The 17th International Solvent Extraction Conference, ISEC 2005, September 19-23 (2005), Beijing, People's Republic of China, CD publication ISBN 7-900692-02-9, 2005, 605 (2005).
  86. J. Nan, D. Han, and X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, J. Power Sources, 152, 278-284 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.134
  87. D. S. Kim, J. S. Sohn, C. K. Lee, J. H. Lee, K. S. Han, and Y. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources, 132, 145-149 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.046

Cited by

  1. Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery pp.1611-8227, 2018, https://doi.org/10.1007/s10163-018-0790-x
  2. 8-Hydroxyquinoline Anchoring 3-D Networking Silica Gel Utilizing Its HOMO as a Metal Trapping Center for Selective Sample Cleanup of Cu(II), Cr(III), and Co(II) and Chemical Speciation of Sorbed Speci vol.64, pp.12, 2019, https://doi.org/10.1021/acs.jced.9b00583
  3. Advances in Kola Cobalt Production Technology: An 80-Year Journey vol.55, pp.5, 2021, https://doi.org/10.1134/s0040579521050079