DOI QR코드

DOI QR Code

Synthesis of PbMo1-xCrxO4 Oxides Prepared Using Hydrothermal Process and their Photocatalytic Activity

수열합성법에 의한 PbMo1-xCrxO4 산화물의 합성 및 광촉매 활성

  • Song, Young In (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2015.09.03
  • Accepted : 2015.10.15
  • Published : 2015.12.10

Abstract

Both lead molybdate ($PbMoO_4$) and chromium substituted lead molybdate ($PbMo_{1-x}Cr_xO_4$) were successfully synthesized using a conventional hydrothermal method and characterized by XRD, DRS, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of rhodamine B under UV-visible irradiation. The XRD and Raman results revealed the successful synthesis of well-crystallized $PbMoO_4$ crystals with the diameter of 51-59 nm, regardless of the addition of chromium ion. The DRS spectra of $PbMo_{1-x}Cr_xO_4$ catalysts showed new intensive absorption bands in the visible region. The $PbMoO_4$ catalysts showed the lowest photocatalytic activity and the activity increased with an increase of chromium substitution amounts under visible irradiation. PL peaks appeared at about 540-580 nm for all catalysts and excitonic PL signals were proportional to the photocatalytic activity for the decomposition of rhodamine B.

$PbMoO_4$$PbMo_{1-x}Cr_xO_4$ 산화물을 수열합성법으로 합성하여 XRD, DRS, Raman, SEM 및 PL 등에 의해 특성분석을 하였고, 자외선 및 가시광 조사 하에서 rhodamine B의 광분해 반응에서의 활성을 조사하였다. XRD 및 Raman의 분석 결과로부터 대부분의 촉매들은 크롬이온의 첨가와 무관하게 잘 결정화된 $PbMoO_4$ 구조를 가지고 있었으며 51에서 59 nm의 크기를 나타내었다. $PbMo_{1-x}Cr_xO_4$ 산화물의 DRS 곡선은 가시광 영역으로 강한 흡수선을 나타내었다. $PbMoO_4$ 산화물은 가시광 조사 하에서 낮은 광촉매 활성을 나타내었으나 크롬이온의 첨가량이 증가할수록 활성이 증가하였다. 모든 촉매들은 540-580 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 광분해 활성이 증가하는 것으로 나타났다.

Keywords

References

  1. I. K. Konstantinou and T. A, Albanis, $TiO_2$-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations, Appl. Catal. B, 49, 1-14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010
  2. K. L. Zhang, M. U. Liu, F. Q. Huang, C. Zheng, and W. D. Wang, Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst, Appl. Catal. B, 68, 125-129 (2006). https://doi.org/10.1016/j.apcatb.2006.08.002
  3. H. Chen, C. Ge, R. Li, J. Wang, C. Wu, and X. Zeng, Growth of Lead Molybdate Crystals by Vertical Bridgman Method, J. Phys. Chem. C, 113, 5812-5822 (2009). https://doi.org/10.1021/jp810294q
  4. J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, and X. Zhu, Room Temperature Synthesis and Optical Properties of $SrMoO_4$ Crystallites by w/o Microemulsion, Ceramic. Inter., 34, 1557-1560 (2008). https://doi.org/10.1016/j.ceramint.2007.03.025
  5. G. Xing, R. Liu, C. Zhao, Y. Li, Y. Wang, and G. Wu, Photoluminescence and photocatalytic properties of uniform $PbMoO_4$ polyhedral crystals synthesized by microemulsion-based solvothermal method, Ceramic. Inter., 37, 2951-2956 (2011). https://doi.org/10.1016/j.ceramint.2011.04.019
  6. S. Wu, H. Dong, and W. Wei, Investigations on the Local Structures and the EPR Parameters for $Er^{3+}$ in $PbMoO_4$ and $SrMoO_4$, J. Alloy Compd., 375, 39-43 (2004).l https://doi.org/10.1016/j.jallcom.2003.11.137
  7. A. Kudo, M. Steinberg, A. J. Bard, A. Campton, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Photoactivity of Ternary Lead-group IVB Oxides for Hydrogen and Oxygen Evolution, Catal. Lett., 5, 61- (1990). https://doi.org/10.1007/BF00772094
  8. H. C. Zeng, Correlation of $PbMoO_4$ Crystal Imperfections to Czochralski Growth Process, J. Cryst. Growth, 171, 136-145 (1997). https://doi.org/10.1016/S0022-0248(96)00465-4
  9. G. H. Jia, C. Y. Tu, Z. Y. You, J. F. Li, Z. J. Zhu, Y. Wang, and B. C. Wu, Czochralski Technique Growth of Pure and Rare-earth-doped $SrWO_4$ Crystals, J. Cryst. Growth, 273, 220-225 (2004). https://doi.org/10.1016/j.jcrysgro.2004.07.095
  10. W. Y. Jung and S. S. Hong, Synthesis of $LaCoO_3$ nanoparticles by microwave process and their photocatalytic activity under visible light irradiation, J. Ind. & Eng. Chem., 19, 157-160 (2013). https://doi.org/10.1016/j.jiec.2012.07.018
  11. W. Y. Jung, K. W. Lim, J. H. Kim, M. S. Lee, and S. S. Hong, Synthesis of Pb-substituted $LaCoO_3$ Nanoparticles by Microwave Process and Their Photocatalytic Activity under Visible Light Irradiation, J. Nanosci. & Nanotech., 13, 6160-6164 (2003).
  12. J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, and X. Fu, Solvothermal Preparation, Electronic Structure and Photocatalytic Properties of $PbMoO_4$ and $SrMoO_4$, Appl. Catal. B, 91, 135-143 (2009) https://doi.org/10.1016/j.apcatb.2009.05.016
  13. B. D. Cullity, Elements of X-Ray Diffraction, Adison-Wesley, Reading, MA (1978).
  14. A. Phuruangrat, T. Thongtemb, and S. Thongtem, Synthesis of lead molybdate and lead tungstate via microwave irradiation method, J. Cryst. Growth, 311, 4076 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.013
  15. W. Y. Jung, G. D. Lee, S. S. Park, K. W. Lim, M. S. Lee, and S. S. Hong, Synthesis of $TiO_2$ Supported on SBA-15 Using Different Method and Their Photocatalytic Activity, J. Nanosci. & Nanotech., 11, 7446-7450 (2011). https://doi.org/10.1166/jnn.2011.4765