DOI QR코드

DOI QR Code

Can the Point Defect Model Explain the Influence of Temperature and Anion Size on Pitting of Stainless Steels

  • Blackwood, Daniel J. (Department of Materials Science & Engineering, National University of Singapore)
  • Received : 2015.07.22
  • Accepted : 2015.11.03
  • Published : 2015.12.31

Abstract

The pitting behaviours of 304L and 316L stainless steels were investigated at $3^{\circ}C$ to $90^{\circ}C$ in 1 M solutions of NaCl, NaBr and NaI by potentiodynamic polarization. The temperature dependences of the pitting potential varied according to the anion, being near linear in bromide but exponential in chloride. As a result, at low temperatures grades 304L and 316L steel are most susceptible to pitting by bromide ions, while at high temperatures both stainless steels were more susceptible to pitting by small chloride anions than the larger bromide and iodide. Thus, increasing temperature appears to favour attack by smaller anions. This paper will attempt to rationalise both of the above findings in terms of the point defect model. Initial findings are that qualitatively this approach can be reasonably successful, but not at the quantitative level, possibly due to insufficient data on the mechanical properties of thin passive films.

Keywords

References

  1. D. J. Blackwood, and S. E. Chua, Proceedings of the 17th International Corrosion Congress on Comparison on influence of molybdenum on the pitting of stainless steels in chloride and bromide solutions, p. 72, Perth, Australia (2011).
  2. A. I. Munoz, J. G. Anton, J. L. Guinon and V. P. Herranz, Corros. Sci., 48, 3349 (2006). https://doi.org/10.1016/j.corsci.2005.11.010
  3. J. E. Truman, Stainless steels, Corrosion 3rd ed., (eds. L. L. Shrier, R. A. Jarman and G. T. Burstein), Vol. 1, Chapter 3, p. 34, Butterworth-Heinemann, Oxford (1994).
  4. G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  5. J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). https://doi.org/10.1149/1.2132857
  6. P. C. Pistorius and G. T. Burstein, Phil. Trans. R. Soc. A, 341, 531 (1992). https://doi.org/10.1098/rsta.1992.0114
  7. D. D. Macdonald, Proceedings of the Electrochemical Society on Pits and pores II : Formation, properties, and significance for Advanced Materials, 2000-25, 141, Phoenix, Arizona (2000).
  8. D. D. Macdonald, Corros. Eng. Sci. Techn., 49, 143 (2014). https://doi.org/10.1179/1743278214Y.0000000158
  9. ASTM G-61-86: Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys, ASTM International, West Conshohocken, PA, USA Re-approved (2009).
  10. R. T. DeHoff, Thermodynamics in materials science, p. 409, McGraw Hill Inc., Singapore (1993).
  11. R. Schmid, A. M. Miah, and V. N. Sapunov, Phys. Chem. Chem. Phys., 2, 97 (2000). https://doi.org/10.1039/a907160a
  12. B. E. Conway and E. Aryranci, J. Solution Chem., 28, 163 (1999). https://doi.org/10.1023/A:1021702230117
  13. J. L. Trompette, Corros. Sci., 82, 108 (2014). https://doi.org/10.1016/j.corsci.2014.01.005
  14. C. G. Malmberg and A. A. Maryott, J. Res. Nat. Bur. Stand., 56, 2641 (1956).
  15. K. V. Rao, A. Smakula, J. Appl. Phys., 36, 2031 (1965). https://doi.org/10.1063/1.1714397
  16. K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Mater. Trans., 47, 2540 (2006). https://doi.org/10.2320/matertrans.47.2540
  17. P. H. Fang and W. S. Brower, Phys. Rev., 129, 1561 (1963). https://doi.org/10.1103/PhysRev.129.1561
  18. H. H. Girault, Charge transfer across liquid-liquid interfaces, Modern Aspects of Electrochemistry, 25, p. 1, Plenum Press, New York (1993). https://doi.org/10.1007/978-1-4615-2876-0_1
  19. C. E. Weir, J. Res. Nat. Bur. Stand., 69A, 29 (1965). https://doi.org/10.6028/jres.069A.005