DOI QR코드

DOI QR Code

Extremely Low Frequency Magnetic Field Modulates the Level of Neurotransmitters

  • Chung, Yoon Hee (Department of Anatomy, College of Medicine, Chung-Ang University) ;
  • Lee, Young Joo (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Lee, Ho Sung (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Chung, Su Jin (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Lim, Cheol Hee (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Oh, Keon Woong (Christmas Clinic) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Park, Eon Sub (Department of Pathology, College of Medicine, Chung-Ang University) ;
  • Jeong, Ji Hoon (Department of Pharmacology, College of Medicine, Chung-Ang University)
  • 투고 : 2014.08.02
  • 심사 : 2014.11.22
  • 발행 : 2015.01.30

초록

This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and ${\gamma}$-aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.

키워드

참고문헌

  1. Cutler TL, Breysse PN, Schiffman A, Kanchanaraksa S, Rooney BC. Comparison of personal exposure meter placement for the determination of office worker ELF magnetic field exposures. Am Ind Hyg Assoc J. 1999;60:647-650. https://doi.org/10.1080/00028899908984486
  2. Breysse P, Lees PS, McDiarmid MA, Curbow B. ELF magnetic field exposures in an office environment. Am J Ind Med. 1994; 25:177-185. https://doi.org/10.1002/ajim.4700250204
  3. Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. Prog Biophys Mol Biol. 2014;114:14-24. https://doi.org/10.1016/j.pbiomolbio.2013.11.002
  4. Markov MS. Magnetic field therapy: a review. Electromagn Biol Med. 2007;26:1-23. https://doi.org/10.1080/15368370600925342
  5. McKay JC, Prato FS, Thomas AW. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 2007;28: 81-98. https://doi.org/10.1002/bem.20284
  6. Crasson M. 50-60 Hz electric and magnetic field effects on cognitive function in humans: a review. Radiat Prot Dosimetry. 2003;106:333-340. https://doi.org/10.1093/oxfordjournals.rpd.a006369
  7. Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem. 2011;112:3797-3806. https://doi.org/10.1002/jcb.23310
  8. Zapponi GA, Marcello I. Recent experimental data on Extremely Low Frequency (ELF) magnetic field carcinogenic risk: open questions. J Exp Clin Cancer Res. 2004;23:353-364.
  9. Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res. 1998;25:116-127. https://doi.org/10.1111/j.1600-079X.1998.tb00548.x
  10. Davis S, Mirick DK, Chen C, Stanczyk FZ. Effects of 60-Hz magnetic field exposure on nocturnal 6-sulfatoxymelatonin, estrogens, luteinizing hormone, and follicle-stimulating hormone in healthy reproductive-age women: results of a crossover trial. Ann Epidemiol. 2006;16:622-631. https://doi.org/10.1016/j.annepidem.2005.11.005
  11. Thun-Battersby S, Mevissen M, Loscher W. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res. 1999;59:3627-3633.
  12. Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic-pituitary-adrenal axis in mice. Bioelectromagnetics. 2013;34:43-51. https://doi.org/10.1002/bem.21743
  13. Sieron A, Labus L Nowak P, Cieslar G, Brus H, Durczok A, Zagzil T, Kostrzewa RM, Brus R. Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics. 2004;25: 426-430. https://doi.org/10.1002/bem.20011
  14. Kroeker G, Parkinson D, Vriend J, Peeling J. Neurochemical effects of static magnetic field exposure. Surg Neurol. 1996; 45:62-66. https://doi.org/10.1016/0090-3019(95)00377-0
  15. Ikehara T, Nishisako H, Minami Y, Ichinose Sasaki H, Shiraishi T, Kitamura M, Shono M, Houchi H, Kawazoe K, Minakuchi K, Yoshizaki K, Kinouchi Y, Miyamoto H. Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular $Ca^{2+}$ in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells. Biochim Biophys Acta. 2010;1800: 1221-1230. https://doi.org/10.1016/j.bbagen.2010.09.001
  16. Corbacio M, Brown S, Dubois S, Goulet D, Prato FS, Thomas AW, Legros A. Human cognitive performance in a 3 mT power-line frequency magnetic field. Bioelectromagnetics. 2011; 32:620-633. https://doi.org/10.1002/bem.20676
  17. Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 2003;14:413-419; discussion 427-428.
  18. Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R. Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol. 1996;99:274-286. https://doi.org/10.1016/0013-4694(96)95154-8
  19. Cook CM, Saucier DM, Thomas AW, Prato FS. Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences. Bioelectromagnetics. 2009;30: 9-20. https://doi.org/10.1002/bem.20434
  20. Kirschstein T, Kohling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40:146-149. https://doi.org/10.1177/155005940904000305
  21. Oishi N, Mima T, Ishii K, Bushara KO, Hiraoka T, Ueki Y, Fukuyama H, Hallett M. Neural correlates of regional EEG power change. Neuroimage. 2007;36:1301-1312. https://doi.org/10.1016/j.neuroimage.2007.04.030
  22. Stevens JR. The EEG spike: signal of information transmission? Ann Neurol. 1977;1:309-314. https://doi.org/10.1002/ana.410010402
  23. Smith M, Pereda AE. Chemical synaptic activity modulates nearby electrical synapses. Proc Natl Acad Sci USA. 2003;100: 4849-4854. https://doi.org/10.1073/pnas.0734299100
  24. Tracey WR, Nakane M, Kuk J, Budzik G, Klinghofer V, Harris R, Carter G. The nitric oxide synthase inhibitor, L-NG-monomethylarginine, reduces carrageenan-induced pleurisy in the rat. J Pharmacol Exp Ther. 1995;273:1295-1299.
  25. Karasek M, Lerchl A. Melatonin and magnetic fields. Neuro Endocrinol Lett. 2002;23 Suppl 1:84-87.
  26. Selmaoui B, Touitou Y. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci. 1995;57:1351-1358. https://doi.org/10.1016/0024-3205(95)02092-W
  27. Cagnacci A, Elliott JA, Yen SS. Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. 1992;75:447-452.
  28. Palazidou E, Franey C, Arendt J, Stahl S, Checkley S. Evidence for a functional role of alpha-1 adrenoceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology. 1989; 14:131-135. https://doi.org/10.1016/0306-4530(89)90062-0
  29. Del Seppia C, Mezzasalma L, Choleris E, Luschi P, Ghione S. Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice. Behav Brain Res. 2003;144:1-9. https://doi.org/10.1016/S0166-4328(03)00042-1
  30. Raus S, Selakovic V, Radenovi L, Prolic Z, Janac B. Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia. Behav Brain Res. 2012;228:241-246. https://doi.org/10.1016/j.bbr.2011.10.046
  31. Jadidi M, Firoozabadi SM, Rashidy-Pour A, Sajadi AA, Sadeghi H, Taherian AA. Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats. Neurobiol Learn Mem. 2007;88:387-392. https://doi.org/10.1016/j.nlm.2007.07.010
  32. Massot O, Grimaldi B, Bailly JM, Kochanek M, Deschamps F, Lambrozo J, Fillion G. Magnetic field desensitizes 5-HT(1B) receptor in brain: pharmacological and functional studies. Brain Res. 2000;858:143-150. https://doi.org/10.1016/S0006-8993(99)02486-5
  33. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990;70: 963-985. https://doi.org/10.1152/physrev.1990.70.4.963
  34. Owen F, Crow TJ. Neurotransmitters and psychosis. Br Med Bull. 1987;43:651-671. https://doi.org/10.1093/oxfordjournals.bmb.a072207
  35. Fagg GE, Foster AC. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience. 1983;9:701-719. https://doi.org/10.1016/0306-4522(83)90263-4
  36. Hanania T, Johnson KM. Regulation of neurotransmitter release by endogenous nitric oxide in striatal slices. Eur J Pharmacol. 1998;359:111-117. https://doi.org/10.1016/S0014-2999(98)00636-0
  37. Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, Snyder SH. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol. 1993;3:749-754. https://doi.org/10.1016/0960-9822(93)90022-G
  38. Lorrain DS, Hull EM. Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport. 1993;5:87-89. https://doi.org/10.1097/00001756-199310000-00024

피인용 문헌

  1. Effects of Phenobarbital on Expression of UDP-Glucuronosyltransferase 1a6 and 1a7 in Rat Brain vol.44, pp.3, 2015, https://doi.org/10.1124/dmd.115.067439
  2. Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/2181942
  3. The Effect of Extremely Low Frequency Electromagnetic Fields on Visual Learning, Memory and Anatomical Structures of the Brain in Male Rhesus Monkeys vol.21, pp.1, 2015, https://doi.org/10.29252/ismj.21.1.40
  4. An extremely low-frequency magnetic field can affect CREB protein conformation which may have a role in neuronal activities including memory vol.4, pp.1, 2015, https://doi.org/10.1088/2399-6528/ab66d2
  5. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade vol.11, pp.2, 2021, https://doi.org/10.3390/brainsci11020174