DOI QR코드

DOI QR Code

Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM

  • Haeri, Hadi (Department of Mining Engineering, Bafgh Branch, Islamic Azad University)
  • Received : 2015.11.14
  • Accepted : 2015.12.09
  • Published : 2015.12.25

Abstract

A simultaneous analytical, experimental and numerical analysis of crack initiation, propagation and breaking process of the Central Straight through Crack Brazilian Disk (CSCBD) specimens under diametrical compression is carried out. Brazilian disc tests are being accomplished to evaluate the fracturing process based on stress intensity factors (SIFs). The effects of crack inclination angle and crack length on the fracturing processes have been investigated. The same experimental specimens have been numerically modeled by a higher order indirect boundary element method (HDDM). These numerical results are compared with the existing experimental results proving the accuracy and validity of the proposed numerical method.

Keywords

References

  1. Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1), 84-97. https://doi.org/10.1016/j.enggeo.2005.07.013
  2. Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688
  3. Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. https://doi.org/10.1016/j.engfracmech.2008.06.018
  4. Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
  5. Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock part II-experimental studies", Int. J. Rock Mech. Min., 4(4) 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
  6. Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series", Appl. Mech. Rev., 52(1), 17-33. https://doi.org/10.1115/1.3098922
  7. Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Tran. Nonferrous Met. Soc. China, 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
  8. Crouch, S.L. (1967), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, Minnesota.
  9. Dai, F. Chen, R, Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002
  10. Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78, 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
  11. Haeri, H. (2015a), Coupled experimental-numerical fracture mechanics, Lambert Academic Press, Germany.
  12. Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  13. Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked rock like shear specimens", Strength. Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  14. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle rock fracture propagation in rock under compression, South African council for scientific and industrial research pretoria. Int. J. Frac. Mech. 1(3), 137-155. https://doi.org/10.1007/BF00186851
  15. Ingraffea, A.R. (1985), "Fracture Propagation in Rock", Mech. Geomater. 219-258.
  16. Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24, 361.
  17. Janeiro, R.P and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract. 164, 83-102. https://doi.org/10.1007/s10704-010-9457-x
  18. Ke, C.C, Chen, C.S and Tu, C.H (2008), "Determination of fracture toughness of anisotropic rocks by boundary element method", Rock Mech. Rock Eng., 41(4), 509-538. https://doi.org/10.1007/s00603-005-0089-9
  19. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
  20. Natarajana, S., Mahapatrab, D.R. and Bordas, S.P.A. (2010), "Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework", Int. J. Numer Meth. Eng., 83, 269-294.
  21. Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027
  22. Ravi-Chandar, K. and Knauss, W.G. (1984), "An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching", Int. J. Fract. 26(2), 141-154. https://doi.org/10.1007/BF01157550
  23. Scavia, C. (1990), "Fracture mechanics approach to stability analysis of crack slopes", Eng. Fract. Mech., 35(4), 889-910. https://doi.org/10.1016/0013-7944(90)90173-E
  24. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 100(B4), 5975-5990. https://doi.org/10.1029/95JB00040
  25. Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech., 32(1), 49-55. https://doi.org/10.1016/0148-9062(94)00016-V
  26. Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29. https://doi.org/10.1016/j.engfracmech.2013.01.018
  27. Wang, Q.Z (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6), 1006-1011. https://doi.org/10.1016/j.ijrmms.2010.05.005
  28. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  29. Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
  30. Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock fracture mechanics principles, design and applications, developments in geotechnical engineering, Elsevier, Amsterdam.
  31. Yang, Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005
  32. Yang, S.Q (2011), "Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation breakage", Eng. Fract. Mech., 78(17), 3059-3081. https://doi.org/10.1016/j.engfracmech.2011.09.002

Cited by

  1. The effect of non-persistent joints on sliding direction of rock slopes vol.17, pp.6, 2016, https://doi.org/10.12989/cac.2016.17.6.723
  2. A review of experimental and numerical investigations about crack propagation vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.235
  3. Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation vol.52, pp.4, 2016, https://doi.org/10.1134/S1062739116041046
  4. Suggesting a new testing device for determination of tensile strength of concrete vol.60, pp.6, 2016, https://doi.org/10.12989/sem.2016.60.6.939
  5. Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC) vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.039
  6. The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.201
  7. Numerical simulation of hydraulic fracturing in circular holes vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1135
  8. Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2015, https://doi.org/10.12989/cac.2017.19.1.099
  9. Direct and indirect methods for determination of mode I fracture toughness using PFC2D vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.039
  10. The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.431
  11. Compression‐induced crack initiation and growth in flawed rocks: A review vol.44, pp.7, 2021, https://doi.org/10.1111/ffe.13477
  12. Experimental Study of Prefabricated Crack Propagation in Coal Briquettes under the Action of a CO2 Gas Explosion vol.6, pp.38, 2021, https://doi.org/10.1021/acsomega.1c02850