DOI QR코드

DOI QR Code

BROYDEN'S METHOD FOR OPERATORS WITH REGULARLY CONTINUOUS DIVIDED DIFFERENCES

  • Galperin, Anatoly M. (Department of Mathematics Ben-Gurion University of the Negev)
  • Received : 2014.02.02
  • Published : 2015.01.01

Abstract

We present a new convergence analysis of popular Broyden's method in the Banach/Hilbert space setting which is applicable to non-smooth operators. Moreover, we do not assume a priori solvability of the equation under consideration. Nevertheless, without these simplifying assumptions our convergence theorem implies existence of a solution and superlinear convergence of Broyden's iterations. To demonstrate practical merits of Broyden's method, we use it for numerical solution of three nontrivial infinite-dimensional problems.

Keywords

References

  1. M. Aigner, Discrete Mathematics, American Mathematical Society, Providence, RI, 2007.
  2. C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965), 577-593. https://doi.org/10.1090/S0025-5718-1965-0198670-6
  3. Y. Eidelman, V. Milman, and A. Tsolomitis, Functional Analysis, American Mathematical Society, Providence, RI, 2004.
  4. F. Facchinei and J.-S. Pang, Finite-dimensional Variational Inequalities and Complemetarity Problems, Springrer-Verlag, N.Y., 2003.
  5. A. Galperin, Secant method with regularly continuous divided differences, J. Comput. Appl. Math. 193 (2006), no. 2, 574-595. https://doi.org/10.1016/j.cam.2005.06.029
  6. A. Galperin, On a class of systems of difference equations and their invariants, J. Difference Equ. Appl. 13 (2007), no. 5, 357-381. https://doi.org/10.1080/10236190601045879
  7. A. Galperin, Ulm's method without derivatives, Nonlinear Anal. 71 (2009), no. 5-6, 2094-2113. https://doi.org/10.1016/j.na.2009.01.044
  8. A. Griewank, The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert space, SIAM J. Numer. Anal. 24 (1987), no. 3, 684-705. https://doi.org/10.1137/0724045
  9. P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Program. 48 (1990), no. 2, 161-220. https://doi.org/10.1007/BF01582255
  10. D. M. Hwang and C. T. Kelley, Convergence of Broyden's method in Banach spaces, SIAM J. Optim. 2 (1992), no. 3, 505-532. https://doi.org/10.1137/0802025
  11. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Elmsford, 1982.
  12. C. T. Kelley, Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995.
  13. C. T. Kelley and E. W. Sachs, Broyden's method for approximate solution of nonlinear integral equation, J. Integral Equations Appl. 9 (1985), no. 1, 25-43.
  14. C. T. Kelley and E. W. Sachs, A quasi-Newton method for elliptic boundary value problems, SIAM J. Numer. Anal. 24 (1987), no. 3, 516-531. https://doi.org/10.1137/0724037
  15. C. T. Kelley and E. W. Sachs, A pointwise quasi-Newton method for unconstrained optimal control problems, Numer. Math. 55 (1989), no. 2, 159-176. https://doi.org/10.1007/BF01406512
  16. C. T. Kelley and E. W. Sachs, A new proof of superlinear convergence for Broyden's method in Hilbert space, SIAM J. Optim. 1 (1991), no. 1, 146-150. https://doi.org/10.1137/0801011
  17. G. G.Magaril-Il'yaev and V.M. Tikhomirov, Convex Analysis, Theory and Applications, American Mathematical Society, Providence, RI, 2003.
  18. O. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear equations, SIAM J. Appl. Math. 31 (1976), no. 1, 89-92. https://doi.org/10.1137/0131009
  19. G. Pimbley, Positive solutions of a quadratic integral equation, Arch. Ration. Mech. Anal. 24 (1967), 107-127. https://doi.org/10.1007/BF00281443
  20. L. Qi, On superlinear convergence of quasi-Newton methods for nonsmooth equations, Oper. Res. Lett. 20 (1997), no. 5, 223-228. https://doi.org/10.1016/S0167-6377(97)00012-6
  21. E.W. Sachs, Broyden's method in Hilbert space, Math. Program. 35 (1986), no. 1, 71-82. https://doi.org/10.1007/BF01589442
  22. W.-H. Yu, A quasi-Newton method in infinite-dimensional spaces and its application for solving a parabolic inverse problem, J. Comput. Math. 16 (1998), no. 4, 305-318.