DOI QR코드

DOI QR Code

The distinct characteristics of phytoplankton growth response and their community structure following seven different nutrients addition in spring season of Jinhae Bay

춘계 진해만에서 농도 구배로 첨가한 영양염에 의한 식물플랑크톤 성장반응과 군집구조의 명확한 특징

  • Son, Moonho (South Sea Research Institute, Korea Institute of Ocean Science & Technology) ;
  • Baek, Seung Ho (South Sea Research Institute, Korea Institute of Ocean Science & Technology)
  • 손문호 (한국해양과학기술원 남해연구소) ;
  • 백승호 (한국해양과학기술원 남해연구소)
  • Received : 2015.07.22
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

In order to estimate the characteristics of the growth and composition of phytoplankton according to the available nutrients, we added nitrate (0, 1, 5, 10, 20, 50, $100{\mu}M$) and phosphate (0, 0.1, 0.5, 1, 2, 5, $10{\mu}M$) to field samples in a eutrophic site (St. 1) and an oligotrophic site (St. 22) in 2010 as well as a eutrophic site (St. 1, 5), a mesotrophic site (St. 19), and an oligotrophic site (St. 22) in 2011 at Jinhae Bay, Korea. The phytoplankton growth in the areas with additional nitrates and phosphates on St. 1 were significantly different from the control (One-way ANOVA:P<0.01). The dominant species at St. 1 in 2010 were Heterocapsa triquetra and Pseudo-nitzchia spp., to which nitrate and phosphate were added, respectively. The dominant species at St. 22 in 2010 differed between treatment conditions as follows: nitrate treatment Chaetoceros spp. (${\leq}10{\mu}M$), Thalassiosira spp. ($20{\mu}M$), and Pseudo-nitzchia spp.(${\geq}50{\mu}M$) for nitrate treatment; Cylindrotheca spp. ($2{\mu}M$) and Pseudo-nitzchia spp. ($5{\mu}M$) for phosphate treatment. Phytoplankton growth in 2011 according to the added nutrient were significantly different with treatment concentrations (One-way ANOVA: P<0.01). Moreover, the beginning of exponential growth in phytoplanktons was different between the eutro-mesotrophic sites (St. 1, 5, and 19) and the oligotrophic sites (St. 22) on day 2 and day 6 respectively. This implies that phytoplankton growth in the low nutrient condition may be retarded. The dominant species at St. 1 were Eucampia spp. and Chaetoceros spp. in the low nutrient treatment compared to Skeletonema spp., and Thalassiosira spp in the high nutrient treatment. The dominant species at St. 5 and St. 19 were mostly Skeletonema spp. and Chaetoceros spp. However, the dominant species at St. 22 was Thalassiosira spp.. The results of this study showed that phytoplankton growth and composition were different in areas with different nutrient characteristics resulting from the additional nutrients. Therefore, the nutrients additional algal assay could be indirectly explained why the biomass and composition of phytoplankton in Jinhae Bay has shown spatial differences.

본 연구는 진해만에서 2010년 부영양화해역(St.1)과 빈영양화해역(St.22)에서, 2011년에는 부영양화해역(St.1, St.5), 중영양화해역(St.19), 빈영양화해역(St.22) 등 해역의 특성이 다른 정점에서 영양염농도구배(Nitrate: 0, 1, 5, 10, 20, 50, $100{\mu}M$; Phosphate: 0, 0.1, 0.5, 1, 2, 5, $10{\mu}M$)에 따른 식물플랑크톤의 성장반응 및 군집구조의 특성을 파악하였다. 2010년 St.1에서 질산염과 인산염첨가군에서는 농도구별에 따른 식물플랑크톤성장의 차이를 보였으나(One-way ANOVA:P<0.01), St.22에서는 영염첨농도구배에 따른 영양염첨가효과가 명확하지 않았다. 2010년 St. 1의 질산염 첨가군에서 와편모조류 Heterocapsa triquetra가 우점하였고, 인산염 실험군에서는 규조류 Pseudo-nitzchia spp.가 각각 우점하였다 진해만 중앙의 빈영양수계 St. 22에서는 질산염농도가 $10{\mu}M$ 전 후에서 Chaetoceros spp.가, $20{\mu}M$에서 Thalassiosira spp.가, > $50{\mu}M$에서 Pseudo-nitzchia spp.가 각각 우점하였고, 인산염 첨가시 $2{\mu}M$ 이하에서는 Cylindrotheca spp.로, $5{\mu}M$ 이상에서는 Pseudo-nitzchia spp.로 우점하였다. 2011년에는 4해역 모두 영양염농도구배에 따른 식물플랑크톤 성장의 명확한 차이를 보였다(One-way ANOVA:P<0.01). 하지만, 정점1, 5, 19에서는 식물플랑크톤의 성장이 2일 후부터 점차적으로 증가하였으나, 정점 22에서는 실험 6일후부터 반응하였고, 이는 낮은 영양염농도에 적응된 생물군에 갑작스럽게 영양염이 공급되어도 성장 지연현상이 일어날수 있다는 것을 의미한다. 식물플랑크톤의 우점종은 정점1의 낮은 영양염농도에서는 Eucampia spp., Chaetoceros spp.가 높게, 높은 영양염농도에서는 Skeletonema spp.와 Thalassiosira spp.로 나타났다. St. 5에서는 Skeletonema spp.가 우점하였고, St.19에서는 Chaetoceros spp.와 Skeletonema spp.도 상대적으로 높은 비율을 차지하였다. 반면, St. 22에서는 Thalassiosira spp.가 높은 점유율을 보였다. 결과적으로 영양염특성이 다른 해역에서 추가적으로 첨가한 영양염은 영양염 농도구배에 따라서 식물플랑크톤의 우점종 및 종조성을 차이를 보였고, 이는 각각의 해역의 특성에 따라서 식물플랑크톤의 현존량 및 우점종의 차이가 명확하게 나타나는 것을 잘 대변할 수 있는 중요한 근거라고 판단된다.

Keywords

References

  1. A. R. Dzialowski, S.-H. Wang, N.-C. Lim, W. W. Spotts, D. G. Huggins, "Nutrient limitation of phytoplankton growth in central plain reservoirs, USA". J. Plankton Res., 27, 587-595, 2005. DOI: http://dx.doi.org/10.1093/plankt/fbi034
  2. R. Riegman, F. Colijn, J. F. P. Malschaert, H. T. Kloosterhuis, G. C. Cadee, "assessment of growth rate limiting nutrients in the North Sea by the use of nutrient-uptake kinetics. Netherlands J. Sea Res., 26, 53-60, 1990. DOI: http://dx.doi.org/10.1016/0077-7579(90)90055-L
  3. D. M. Nelson, Q. Dortch, "Silicic acid depletion and silicon limitation in the plume of the Mississippi river:Evidence from kinetic studies in spring and summer". Mar. Ecol. Prog. Ser., 136, 163-178, 1996. DOI: http://dx.doi.org/10.3354/meps136163
  4. C. MacPhee, "Bioassay of algal production in chemically altered waters". Limnol. Oceanogr., 6, 416-422, 1961. DOI: http://dx.doi.org/10.4319/lo.1961.6.4.0416
  5. M. Schallenberg, C. W. Burns, "Effects of sediment resuspension on phytoplankton production: testing apart the influences of light, nutrients and algal entrainment", Freshwater Biol., 49, 143-159, 2004. DOI: http://dx.doi.org/10.1046/j.1365-2426.2003.01172.x
  6. T. H. Chrzanowski, J. P. Grover, "Effects of mineral nutrients on the growth of bacterio-and phytoplankton in two southern reservoirs". Limnol. Oceanogr., 46, 1319-1330. 2001. DOI: http://dx.doi.org/10.4319/lo.2001.46.6.1319
  7. M, Son, D. Kim, S.H. Baek, Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay. J. Kor. Academia-Industrial coop. Sco., 15, 3345-3350, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.5.3345
  8. N, Wasmunda, A. Andrushaitisb, E. Lysiak-Pastuszakc, B. Muller-Kaulish, G. Nauscha, T. Neumanna, H. Ojayeecd, I. Oleninae, L. Postela, Z. Witekf, Trophic status of the south-eastern Baltic Sea: A comparison of coastal and shelf science. Estuar. Coast, Shelf Sci., 53, 849-864. 2001. DOI: http://dx.doi.org/10.1006/ecss.2001.0828
  9. M. Son, D. Kim, S.H. Baek, "distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay". J. Korea Academia-industrial Cooperation Society, 15, 3345-3350. 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.5.3345
  10. C. Labry, E. E. Denn, A. Chapelle, J. Fauchot, A Youenou, M. P. Crassous, J. LeGrand, B. Lorgeoux, "Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra". J. Exp. Mar. Biol. Ecol., 358, 124-135, 2008. DOI: http://dx.doi.org/10.1016/j.jembe.2008.01.025
  11. S. H. Baek, J. S. Ki, T. Katano, K You, B. S. Park, H. H. Shin, K Shin, Y. O. Kim, M.-S. Han."Dense winter bloom of the dinoflagellate Heterocapsa triquetra below the thick surface ice of brackish Lake Shihwa, Korea". Phycol. Res., 59, 273-285, 2011. DOI: http://dx.doi.org/10.1111/j.1440-1835.2011.00626.x
  12. T. Nishikawa, "Effects of temperature, salinity and irradiance on the growth of the diatom Eucampia zodiacus caused bleaching of seaweed porphyra isolated from Harima-Nada, Seto Inland Sea, Japan". Nippon Suisan Gakkai, 68, 356-361, 2002. DOI: http://dx.doi.org/10.2331/suisan.68.356
  13. M. Takabayashi, K Lew, A. Johnson, A. Marchi, R. Dugdale, F. P. Wilkerson, "The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum". J. Plank. Res., 28, 831-840, 2006. DOI: http://dx.doi.org/10.1093/plankt/fbl018
  14. K. W. Park, Y. S. Suh, W. A. Lim, "Seasonal changes in phytoplankton composition in Jinhae Bay, 2011". J. Korean Soc. Mar. Environ. Safety, 18, 520-529, 2012. DOI: http://dx.doi.org/10.7837/kosomes.2012.18.6.520
  15. R. W. Krawiec, "Autecology and clonal variability of the marine centric diatom Thalassiosira rotula (Bacillariophyceae) in response to light, temperature and salinity". Mar. Biol., 69, 79-89, 1982. DOI: http://dx.doi.org/10.1007/BF00396964