DOI QR코드

DOI QR Code

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang

광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정

  • Kim, Hyeon-Tae (Department of Civil Engineering, Chosun University) ;
  • Kim, Daehyeon (Department of Civil Engineering, Chosun University) ;
  • Lim, Jae-Choon (Department of Civil Engineering, Chosun University) ;
  • Park, Kyung-Ho (Department of Civil Engineering, Chosun University) ;
  • Lee, Ik-Hyo (Department of Marine and Civil Engineering, Chonnam National University)
  • 김현태 (조선대학교 토목공학과) ;
  • 김대현 (조선대학교 토목공학과) ;
  • 임재춘 (조선대학교 토목공학과) ;
  • 박경호 (조선대학교 토목공학과) ;
  • 이익효 (전남대학교 해양토목공학과)
  • Received : 2015.11.12
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

최근 구조물 기초 분야에 대한 한계상태설계법이 국제적인 기술표준으로 요구됨에 따라 연구기반이 미약한 연약지반 개량공법에 대한 하중저항계수설계법 개발의 필요성이 대두되었다. 본 연구는 신뢰성 분석을 통해 항타강관말뚝의 목표신뢰성지수 및 저항계수를 산정하여 기초 구조물에 대한 LRFD code를 개발하고자 하였다. 프로그램의 검증을 위해 광양지역 16개의 항타말뚝 재하시험 결과와 2008년 한국건설기술연구원에서 이용된 57개의 항타말뚝 재하시험 결과를 취합하였다. 구조물기초설계기준에서 제안하고 있는 두가지 정역학적 설계공식에 대해서 대표 측정지지력과 설계지지력을 비교함으로써 저항편향계수를 평가하였고, 저항편향계수의 통계특성을 이용하여 일차신뢰도법 및 몬테카를로 실뮬레이션에 의한 신뢰성 분석을 실시하였다. 그 결과, 항타강관말뚝의 목표 신뢰성지수 2.0, 2.33, 2.5에 대해서 선단부 N치 50이하인 경우 두 지지력 공식의 저항계수는 각각 0.611~0.684, 0.821~0.537, 선단부 N치 50이상인 경우 각각 0.608~0.545, 0.749~0.643으로 제안되었다. 본 연구결과는 향후 다양한 기초구조물 및 지반구조물의 하중저항계수설계법 개발을 위한 자료로서 그 활용성이 있을 것이다.

Keywords

References

  1. American Association of State Highway and Transportation Official, "AASHTO LRFD Bridge Design Specifications Fourth Edition", AASHTO, Washington, D.C., 2007.
  2. Eurocode 7, "Geotechnical Design, General Rules", European Committee for Standardization, Prestandard, Danish Geotechinal Institute, Copenhagen., 1993.
  3. Kim, D.W., Chang M.K, and Kwak, K.S., "Resistance Factor Calculations for LRFD of Axially Loaded Driven Piles in Sands", KSCE Journal of Civil Engineering, Vol. 15, No. 7, pp. 1185-1196, 2011. DOI: http://dx.doi.org/10.1007/s12205-011-1254-1
  4. Freudenthal, A.M., "The Safety of Structures", Journal of Engineering Mechanics Division, ASCE, Vol. 112, pp. 125-180, 1947.
  5. Pugsley, A., "Report on Structural Safety", Journal of Structural Engineering, ASCE, Vol. 33, No. 5, pp. 141-149, 1995.
  6. Cornell, C.A., "A Probability-Based Seructural Code", Proceeding of The American Concrete Institute, Vol. 66, No. 12, pp. 974-985. 1969.
  7. Hansofer A.M. and Lind, N.C., "Exact and Invariat Second Moment code Format", Journal of Engineering Mechanics Division, ASCE, Vol. 100, pp. 111-121, 1974.
  8. Shinozuka. M., "Basic analysis of Structural Safety", Journal of Structural Engineering, ASCE, Vol. 109, No. 3, pp. 721-740, 1983. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:3(721)
  9. Hansen, B., "Earth Pressure Calculation", Danish Technical Press, Copenhagen, Denmark, 1953.
  10. Canadian Geotechnical Society, "Canadian Foundation Engineering Manual(CFEM)", 2nd Edition Canadian Geotechnical Society Technical Commitee on Faundation, Ottawa, 1992.
  11. Han, Y.B., Park, J.M. and Jang, Y.S., "Evaluation of the Resistance Bias Factors to Develop LRFD for Gravel Compaction Piles", Journal of Korean Geotechnical Society, Vol. 28, No. 2, pp. 43-55, 2012. DOI: http://dx.doi.org/10.7843/kgs.2012.28.2.43
  12. Kwak, K.S., Park, J.H., Choi, Y.K. and Huh, J.W., "Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles", KSCE Journal of Civil Engineering, Vol. 26, No. 5, pp. 343-350, 2006.
  13. Huh, J.W., Park, J.H., Kim, K.J., Lee, J.H. and Kwak, K.S., "Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea", Journal of Korean Geotechnical Society, Vol. 23, No. 12, pp. 61-73, 2007.
  14. Park, J.H., Huh, J.W., Kim, M.M. and Kwak, K.S., "Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea", KSCE Journal of Civil Engineering, Vol. 28, No. 6, pp. 367-377, 2008.
  15. Davisson, M., "High Capacity Piles", Soil Mechanics Lecture Series on Innovations In Foundaion Construction, Illinoisection, Chicago, 1972.
  16. Paikowsky S.G., "Load and Resistance Factor Design(LRFD) for deep foundations", NCHRP Report 24-17 Transportation Research Board, Washington D.C., p. 76, 2004.