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Abstract. The aim of this paper is to prove a fixed point theorem on a generalised cone

metric spaces for maps satisfying general contractive type conditions.

1. Introduction

The study of fixed points of mappings satisfying certain contractive conditions
has been very active area of research. Recently Long-Guang and Xian [9] generalised
the concept of a metric space, by introducing cone metric spaces, and obtained some
fixed point theorem for mappings satisfying certain contractive conditions. One can
consider a generalisation of a cone metric space by replacing the triangle inequality
by a more general inequality. As such, every cone metric is a generalised cone metric
space but the converse is not true. However the interesting point to note that two
very important fixed point theorems, namely Banach’s fixed point theorem and
Ciric’s fixed point theorem have already establised in such a space. In this paper
we continue in this direction and prove a fixed point theorem of Boyed and Wang
[2],[5] under fairly general condition a generalised cone metric spaces.

2. Section 2

Let E be a real Banach space. A nonempty convex closed subset P ⊂ E is
called a cone in E if it satisfies:
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(i) P is closed, nonempty and P ̸= {0},

(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply that ax+ by ∈ P ,

(iii) x ∈ P and − x ∈ P imply that x = 0.

The space E can be partially ordered by the cone P ⊂ E; i. e. x ≤ y if and only if
y−x ∈ P . Also we write x << y if y−x ∈ int P , where int P denotes the interior
of P .
A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y
implies ∥ x ∥≤ K ∥ y ∥.
In the following we always suppose that E is a real Banach space, P is a cone in E
and ≤ is partial ordering with respect to P .

Definition 2.1. Let X be a nonempty set and let E be a Banach space with cone
P and d : X2 → E be a mapping such that for all x, y ∈ X and for any k (k ≥ 2)
distinct points z1, z2, ......, zk in X each of them different from x and y, one has

1. θ ≤ d(x, y) for all x, y ∈ X, and d(x, y) = θ if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, y) ≤ d(x, z1) + d(z1, z2) + ..... + d(zk, y) for all x, y, z1, z2, ......, zk in X.
i.e. {d(x, z1) + d(z1, z2) + .....+ d(zk, y)− d(x, y)} ∈ P

Then we say (X, d) is a generalised cone metric space (or shortly g.c.m.s.).

Throughout this section a g.c.m.s. will be denoted by (X, d) (or sometimes by
X only) and N denote the set of all naturals.
Any cone metric space is a g.c.m.s. but the converse is not true [1]. We first recall
some basic definitions.

Definition 2.2. A sequence {xn}n∈N ∈ X is said to be a g.c.m.s. convergent if for
every ε in E with θ < ε, there is an N ∈ N such that for all n > N , ε−d(xn, x) ∈ P
for some fixed x ∈ X.

Definition 2.3. A sequence {xn}n∈N ∈ X, is said to be a g.c.m.s. Cauchy sequence
if for every ε ∈ E with θ < ε, there is an N ∈ N such that for all m,n > N ,
ε− d(xn, xm) ∈ P .

We say that a g.c.m.s is complete if every Cauchy sequence in X is convergent
in X.

Definition 2.4. A mapping T : X → X is said to be contractive if for any two
points x, y ∈ X, d(x, y)− d(Tx, Ty) ∈ P .

Definition 2.5. A function f : E → P is said to be upper semicontinuous at x0 ∈ E
if there exists a neighbourhood U of x0 such that f(x) + ϵ ∈ P, for all x ∈ U .

We now prove the following fixed point theorem for Boyd andWong’s contractive
mappings [2], [5].
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Theorem 2.6. Let X be a complete g.c.m.s. and let T : X → X satisfies

ψ(d(x, y))− d(Tx, Ty) ∈ P,(2.1)

where ψ : P̄ → E is upper semicontinuous from right on P̄ (the closure of the range
d) and satisfies ψ(t) < t for all t ∈ P̄ − {0}. Then T has a unique fixed point x0
and Tnx→ x0 for all x ∈ X.

Proof. Given x ∈ X, define

cn = d(Tnx, Tn−1x).(2.2)

since d(Tx, Ty) ≤ ψ(d(x, y)) < d(x, y), the sequence {cn}n∈N ie decreasing. Suppose
cn → c ∈ E. Then if c > 0, we have ψ(cn)− cn+1 ∈ P . Then lim sup

t→c+
ψ(t)− c ∈ P .

i.e. ψ(t)− c ∈ P which is a contradiction. Therefore cn → 0.
For each x ∈ X, consider the sequence {Tnx}. First assume that it is eventually
constant. So there is some n ∈ N such that Tmx = Tnx = y for each m > n.

Then Tm−n(Tnx) = Tnx, so denoting k = m−n, we have T ky = y for all k ∈ N.
It follows that d(y, Ty) = d(T ky, T k+1y) = ck for all k, and since ck → 0,
d(y, Ty) = 0, so y = Ty. Then y is a fixed point of T.

If {Tnx} is not eventually constant, then it has a subsequence with pairwise
distinct terms. Without loss of generality, assume that {Tnx} is this subsequence.
We shall show that {Tnx} is a g.c.m.s. Cauchy sequence. By contradiction suppose
that there is an ε > 0 and sequences {mk}, {nk} of positive integers with k ≤ nk <
mk such that

ε− d(Tmkx, Tnkx) /∈ P for all k ∈ N.(2.3)

Since this is true for all k ∈ N, we can conclude that for all k ∈ N, there will exist
nk ≥ k and an infinite number of mk > nk for which

ε

3
− d(Tmkx, Tnkx) ∈ P.(2.4)

For otherwise let m1 > n(K) be the highest positive integer for which (2.4) holds.
Since ck → 0 as k → ∞ we can find m2 ∈ N such that

ck =
ε

3
− d(T kx, T k−1x) ∈ P for all k ≥ m2.(2.5)

Now if m0 = max(m1,m2) then for any i, j > m0
ε
3 − d(T ix, T i+1x) ∈ P ⇒ ε

3 − d(T ix, T jx) ∈ P , if j = i + 1 ⇒ ε − d(T ix, T jx) ∈
P ⇒ ε

3 − d(T ix, T i+1x) ∈ P ; ε
3 − d(T i+1x, Tnx) ∈ P ; ε

3 − d(Tnx, T jx) ∈ P ⇒
ε− d(T ix, , T jx) ∈ P if j > i+ 1, which contradicts (2.3).
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Now in the view of (2.4) we can choose mk as the least positive integer greater than
nk + 2 for which

d/3 =
ε

3
− d(Tmkx, Tnkx) ∈ P for all k ∈ N.(2.6)

Assume that k ≥ m2. Now if

(i) m ≥ n+5 then clearly, cm−d(Tmx, Tm+1x) ∈ P ; cm−1−d(Tm−1x, Tm−2x) ∈
P ; ε

3 − d(Tm−1, Tnx) ∈ P . This implies (cm + cm−1 +
ε
3 − d(Tmx, Tnx) ∈ P

i.e. (2ck + ε
3 − d(Tmx, Tnx) ∈ P .

Choose dk = (2ck + ε
3 − d(Tmx, Tnx) ∈ P .

(ii) If m = n+ 3 then by (2.5)
ε
3−d(T

m−2x, Tnx) ∈ P , so ck−d(Tmx, Tm−1x) ∈ P ; ck−d(Tm−1x, Tm−2x) ∈
P and ε

3 − d(Tm−2x, Tnx) ∈ P
implies (2ck + ε/3)− d(Tmx, Tnx) = dk ∈ P .

(iii) If m = n + 4 then ck − d(Tnx, Tn+1x) ∈ P ; ck − d(Tn+1x, Tn+2x) ∈ P ;
ck − d(Tn+2x, Tn+3x) ∈ P ; ε

3 − d(Tn+3x, Tn+4x) ∈ P . This implies (3ck +
ε
3 )− d(Tmx, Tnx) = dk ∈ P .

Hence ε
3 − dk ∈ P as k → ∞.

Again, ck − d(Tmx, Tm+1x) ∈ P ; ck − d(Tm+1x, Tn+1x) ∈ P ; i.e.
ψ(d(Tmx, Tnx))− d(Tn+1x, Tnx) ∈ P .
Hence ψ(dk)− d(Tn+1x, Tnx) ∈ P . Which shows that

2ck + ψ(dk)− d(Tmx, Tnx) = dk ∈ P(2.7)

Thus as k → ∞ from (2.7), we obtain ψ( ε3 )−
ε
3 ∈ P ,

which contradicts the given condition since ε > 0.
Therefore in this case {Tnx} is a g.c.m.s. Cauchy and as X is complete, {Tnx}
converges to a point x0 in X.
We shall show that Tx0 = x0. We divide the proof into two parts. First let Tnx be
different from both x0 and Tx0 for any n ∈ N. Then
d(Tx0, T

nx) + d(Tnx, Tn+1x) + d(Tn+1x, Tx0)− d(x0, Tx0) ∈ P
i.e. d(x0, T

nx) + cn+1 + ψ(d(x0, T
nx0))− d(x0, Tx0) ∈ P

hence d(x0, Tx0) + cn+1 + d(x0, T
nx0)− d(x0, Tx0) ∈ P . Which gives

ε− d(x0, Tx0) ∈ P for any ε > 0 and as n→ ∞.
Which implies Tx0 = x0.
Next assume that T kx = x0 or T kx = Tx0 for some k ∈ N.
Obviously then x0 ̸= x and one can easily show that {Tnx0} is a sequence with the
following properties.

(i) ε− lim
n→∞

d(Tnx0, x0) ∈ P .

(ii) x0 − Tnx0 /∈ P for any n ∈ N.

(iii) T rx0 − T px0 /∈ P for any p, r ∈ N, p ̸= r.
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Hence proceeding the above it immediately follows that x0 is a fixed point of T .
That the fixed point of T is unique easily follows from the definition of T . 2
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