On Divisorial Submodules

Ahmad Yousefian Darani* and Mahdi Rahmatinia
Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
e-mail: yousefian@uma.ac.ir and m.rahmati@uma.ac.ir
Abstract. This paper is devoted to study the divisorial submodules. We get some equivalent conditions for a submodule to be a divisorial submodule. Also we get equivalent conditions for $(N \cap L)^{-1}$ to be a ring, where N, L are submodules of a module M.

1. Introduction

Throughout this paper all rings are considered commutative rings with identiry and all modules are considered unitary. Let R be a commutative ring with identity and let M be an R-module. M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Let M be a multiplication R module and N a submodule of M. Then $N=I M$ for some ideal I of R. Hence $I \subseteq\left(N:_{R} M\right)$ and so $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. Therefore $N=\left(N:_{R} M\right) M$ [8]. Let R be an integral domain, M a faithful multiplication R-module and N, L submodules of M. Then $\left(N:_{R} M\right)\left(L:_{R} M\right)=\left(N L:_{R} M\right)$ [7, Lemma 3.6]. Therefore $N L=\left(N L:_{R} M\right) M$. Thus we get $N^{n}=\left(N^{n}:_{R} M\right) M$. An R-module M is called a cancellation module if $I M=J M$ for two ideals I and J of R implies $I=J$ [3]. By [17, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It follows that if M is a finitely generated faithful multiplication R-module, then $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [9].

Let S be the set of all non-zero divisors of R and $T(R)=R_{S}$ the total quotient ring of R. For a nonzero ideal I of R, let $I^{-1}=\{x \in T(R): x I \subseteq R\}$. An ideal I

[^0]of R is called invertible, if $I I^{-1}=R$. Let M be an R-module and set
$$
T=\{t \in S: \text { for all } m \in M, t m=0 \text { implies } m=0\}
$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsionfree then $T=S$. In particular, $T=S$ if M is a faithful multiplication R-module [9, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1}=$ $\left(M:_{R_{T}} N\right)=\left\{x \in R_{T}: x N \subseteq M\right\}$ and $N_{\nu}=\left(N^{-1}\right)^{-1}$. Then N^{-1} is an $R-$ submodule of $R_{T}, R \subseteq N^{-1}$ and $N N^{-1} \subseteq M$. We say that N is invertible in M if $N N^{-1}=M$. Clearly $0 \neq M$ is invertible in M. If I is an invertible ideal of R then $I M$ is invertible in M and the converse is true if M is a finitely generated faithful multiplication R-module [15]. Every invertible submodule N of a finitely generated faithful multiplication R-module M is finitely generated faithful multiplication and the converse is true if R is an integral domain [1]. An R-module M is called a Dedekind module (resp., Prüfer module) if every nonzero submodule (resp., every nonzero finitely generated submodule) of M is invertible [15]. An R-module M is called a valuation module if for all $m, n \in M$, either $R m \subseteq R n$ or $R n \subseteq R m$. Equivalently, M is a valuation module if for all submodules N and K of M, either $N \subseteq K$ or $K \subseteq N$ [4].

Following [3], a submodule N of M is called a divisorial submodule of M in case $N=N_{\nu} M$. If M is a finitely generated faithful multiplication R-module, then $N_{\nu}=\left(N:_{R} M\right)$. Consequently, $M_{\nu}=R$. Let M be a finitely generated faithful multiplication R-module, N a submodule of M and I an ideal of R. Then N is a divisorial submodule of M if and only if $\left(N:_{R} M\right)$ is a divisorial ideal of R. Also I is divisorial ideal of R if and only if $I M$ is a divisorial submodule of M [2]. If N is an invertible submodule of a faithful multiplication module M over an integral domain R, then $\left(N:_{R} M\right)$ is invertible hence a divisorial ideal of R. So N is a divisorial submodule of M [2]. If R is an integral domain, M a faithful multiplication R-module and N a nonzero submodule of M, then $N_{\nu}=\left(N:_{R} M\right)_{\nu}$ [2, Lemma 1]. A submodule N of an R-module M is called an idempotent submodule of M if $N=\left(N:_{R} M\right) N$. It is shown that, if M is a multiplication R-module and N a submodule of M such that $\left(N:_{R} M\right)$ is an idempotent ideal of R, then N is an idempotent submodule of M. The converse is true if M is a finitely generated faithful multiplication R-module [5, Theorem 3]. We say that a submodule N of M is a radical submodule of M if $N=\sqrt{N}$, where $\sqrt{N}=\sqrt{\left(N:_{R} M\right)} M$. If $a \in \sqrt{N}=\sqrt{\left(N:_{R} M\right)} M$, then $a^{n} \in\left(N:_{R} M\right) M=N$. Also, $N=\left(N:_{R} M\right) M \subseteq$ $\sqrt{\left(N:_{R} M\right)} M=\sqrt{N}$. It is shown that if R is an integral domain, M a faithful multiplication R-module and N a submodule of M, then N is a radical submodule of M if and only if $\left(N:_{R} M\right)$ is a radical ideal of $R[6$, Lemma 6]. Let R be a ring and M a finitely generated multiplication R-module. Then Q is a P-primary submodule of M if and only if $\left(Q:_{R} M\right)$ is a $\left(P:_{R} M\right)$-primary ideal of R [2, Lemma 4].
Let R be a an integral domain, M a faithful multiplication R-module and N a submodule of M. Then $T(N)=\bigcup_{n=1}^{\infty}\left(M:_{K}(N ; M)^{n} M\right)$. Furthermore, if M is
finitely generated, then $T(N)=\bigcup_{n=1}^{\infty}\left(R:_{K}\left(N:_{R} M\right)^{n}\right)=T\left(\left(N:_{R} M\right)\right)$, [2]. An integral domain R is said to satisfy the trace property ($T P$) provided that $\operatorname{Tr}(M)=\sum_{f \in \operatorname{Hom}(M, R)} f(M)$ either equals R or is a prime ideal of R for each R-module M [11]. An R-module M satisfies trace property $(T P)$ if $\operatorname{Tr}_{M}(N)=M$ or $\operatorname{Tr}_{M}(N)$ is a prime submodule for each nonzero submodule N of M, where $\operatorname{Tr}_{M}(N)=\sum_{f \in \operatorname{Hom}(N, M)} f(N)$, [2]. It is proved that if R is a ring, M an R-module and N a submodule of M, then $\operatorname{Tr}_{M}(N)^{-1}=\left(\operatorname{Tr}_{M}(N):_{R_{T}} \operatorname{Tr}_{M}(N)\right)$. Moreover if M is a finitely generated faithful multiplication R-module, then $\operatorname{Tr}_{M}(N)=N N^{-1}$, [2, Theorem 15].
In section 2, we generalize some properties of dividorial ideals of an integral domain to modules. In Lemma 2.1, we get equivalent conditions for a submodule to be a divisorial submodule. Let R be an integral domain, M a Prüfer faithful multiplication R-module and P a maximal submodule of M. Then each power of P is a divisorial submodule of M if and only if P^{2} is a divisorial submodule of M (Lemma 2.4). In Theorem 2.5, we imply other equivalent conditions for each power of P to be divisorial submodule. An R-module M satisfies radical trace property ($R T P$) provided $\operatorname{Tr}_{M}(N)=M$ or $\operatorname{Tr}_{M}(N)=\sqrt{N N^{-1}}$ for each submodule N of M. In Theorem 2.8, we show that if R is an integral domain and M a faithful multiplication R-module, then M satisfies $R T P$ if and only if R satisfies $R T P$. In Theorem 2.9, we give equivalent conditions for M to satisfies $R T P$. In proposition 2.14, we show that, if R is an integral domain and M a faithful multiplication R-module, then M is a discrete Valuation module if and only if each P-primary submodule of M is a power of P. Let R ba an integral domain and M a faithful multiplication R-module. Let N and K be two submodules of M such that N is invertible and $K \subseteq N$. Then there exists an ideal I of R such that $K=I N$ (Lemma 2.15). Let R be an integral domain, K a quotient field of R such that $R \neq K$ and M a Valuation faithful multiplication R-module. Then the product of two P-primary submodules of M is a P-primary submodule of M (Lemma 2.17). In Theorem 2.18, we prove that, if R is an integral domain, K a quotient field of R such that $R \neq K$ and M a Valuation faithful multiplication R-module and if $P \neq P^{2}$ is a prime submodule of M, then each P-primary submodule of M is a power of P.
In section 3, we give equivalent conditions for N^{-1} and L^{-1} to be rings, where N, L are submodules of R-module M. let R be a ring and N, L be two submodules of an R-module M. Then N and L are coprime if $N+L=M$ [2]. Let R be an integral domain, M a faithful multiplication R-module and N, L coprime submodules of M. We get equivalent conditions for $(N \cap L)^{-1}$ to be a ring (Theorem 3.1 and Theorem 3.6). In Proposition 3.7, we show that if R is an integral domain, M a faithful multiplication R-module and N a radical submodule of M such that $N=K \cap L$ for submodules K, L of M, then N^{-1} is a ring if and only if there are radical submodules $K_{1} \supseteq K$ and $L_{1} \supseteq L$ of M such that $N=K_{1} \cap L_{1}$ and K_{1}^{-1} and L_{1}^{-1} are rings.

2. Divisorial Submodules

Compare the next results with [11, Lemma 4.1.8, Lemma 4.1.16, Proposition 4.1.17, Corollary 4.1.18, Theorem 4.1.19, Theorem 4.2.13, Lemma 4.2.14, Lemma 4.2.15 and Lemma 5.3.1]. We start with the following lemma.

Lemma 2.1. Let R be an integral domain and M a Prüfer faithful multiplication R-module. If P is a maximal submodule of M, then the following are equivalent:
(1) P is a divisorial submodule of M;
(2) P^{n} is a divisorial submodule of M for each positive integer n;
(3) P is a finitely generated submodule of M (i.e. P is an invertible submodule of $M)$.
Proof. (1) \Rightarrow (3) If P is not an invertible submodule of M, then $P^{-1}=R,[2$, Proposition 13]. Since P is a divisorial submodule of M, then

$$
P=\left(P^{-1}\right)^{-1}=R^{-1}=R
$$

which is a contradiction, because R is invertible. Therefore P is an invertible submodule of M.
$(3) \Rightarrow(2)$ If P is a finitely generated submodule of M, then so is P^{n} for each positive integer n. So P^{n} is an invertible submodule of M. Thus P^{-n} is not a subring of $T(R),\left[2\right.$, Proposition 11]. Therefore P^{n} is a divisorial submodule of M for each positive integer $n, ~[2$, Proposition 14].
$(2) \Rightarrow(1)$ It is clear.
Lemma 2.2. Let R be an integral domain, M a faithful multiplication R-module and N a submodule of M. Then $\left(M:_{R_{T}} T(N)\right)=\bigcap_{n=1}^{\infty}\left(N^{n}\right)_{\nu}$.
Proof. By [2, Lemma 1], we have $\left(N:_{R} M\right)_{\nu}=N_{\nu}$. Therefore

$$
\begin{aligned}
\left(M:_{R_{T}} T(N)\right) & =\left(M:_{R_{T}} \bigcup_{n=1}^{\infty}\left(M:_{R_{T}}\left(N:_{R} M\right)^{n} M\right)\right) \\
& =\left(M:_{R_{T}} \bigcup_{n=1}^{\infty}\left(N:_{R} M\right)^{-n} M\right) \\
& =\bigcap_{n=1}^{\infty}\left(M:_{R_{T}}\left(N:_{R} M\right)^{-n} M\right) \\
& =\bigcap_{n=1}^{\infty}\left(R:_{T(R)}\left(N:_{R} M\right)^{-n}\right)=\bigcap_{n=1}^{\infty}\left(\left(N:_{R} M\right)^{-n}\right)^{-1} \\
& =\bigcap_{n=1}^{\infty}\left(N:_{R} M\right)_{\nu}^{n}=\bigcap_{n=1}^{\infty} N_{\nu}^{n} .
\end{aligned}
$$

Proposition 2.3. Let R be an integral domain, M a faithful multiplication R module and P a maximal submodule of M. Then P^{n} is divisorial for each positive
integer n if and only if $\left(M:_{R_{T}} T(P)\right)=P_{0}$, where $P_{0}=\bigcap_{n=1}^{\infty} P^{n}$.
Proof. Let P^{n} be a divisorial submodule of M for each positive integer n. By Lemma 2.2, $\bigcap_{n=1}^{\infty} P^{n}=\bigcap_{n=1}^{\infty}\left(P^{n}\right)_{\nu}=\left(M:_{R_{T}} T(P)\right)$.
For converse, assume that P is a maximal submodule of M. If $P^{-1}=R$, then by [2, Lemma 1], $\left(P:_{R} M\right)^{-1}=R$. Hence by induction we have

$$
\begin{aligned}
P^{-n} & =\left(P:_{R} M\right)^{-n}=\left(R:_{T(R)}\left(P:_{R} M\right)^{n}\right) \\
& =\left(R:_{T(R)}\left(P:_{R} M\right)^{n-1}:_{R}\left(P:_{R} M\right)\right) \\
& =\left(\left(P:_{R} M\right)^{-(n-1)}:_{R}\left(P:_{R} M\right)\right) \\
& =\left(R:_{T(R)}\left(P:_{R} M\right)\right)=\left(P:_{R} M\right)^{-1}=P^{-1}=R .
\end{aligned}
$$

Thus

$$
\begin{aligned}
T(P) & =\bigcup_{n=1}^{\infty}\left(M:_{R_{T}}\left(P:_{R} M\right)^{n} M\right)=\bigcup_{n=1}^{\infty}\left(R:_{T(R)}\left(P:_{R} M\right)^{n}\right) \\
& =\bigcup_{n=1}^{\infty}\left(P:_{R} M\right)^{-n}=\bigcup_{n=1}^{\infty}\left(\left(P:_{R} M\right)^{-1}\right)^{n}=\bigcup_{n=1}^{\infty}\left(P^{-1}\right)^{n}=R
\end{aligned}
$$

Then $\left(M:_{R_{T}} T(P)\right)=\left(M:_{R_{T}} R\right)=M$, which is a contradiction. Hence P is a invertible submodule of M, [2, Proposition 13]. So by Lemma $2.1, P$ is a finitely generated submodule of M. Then, by Lemma 2.1, P^{n} is a divisorial submodule of M for each positive integer n.
Lemma 2.4. Let R be an integral domain, M a Prüfer faithful multiplication R module and P a maximal submodule of M. Then each power of P is a divisorial submodule of M if and only if P^{2} is a divisorial submodule of M.
Proof. Assume that P^{2} is a divisorial submodule of M. If P is not invertible, then $P^{-1}=R,\left[2\right.$, Proposition 13]. Then, by [2, Lemma 1], $\left(P:_{R} M\right)^{-1}=R$. So, by [2, Lemma 1], we have

$$
\begin{aligned}
P^{-2} & =\left(P:_{R} M\right)^{-2}=\left(R:_{T(R)}\left(P:_{R} M\right)^{2}\right) \\
& =\left(R:_{T(R)}\left(P:_{R} M\right):_{R}\left(P:_{R} M\right)\right) \\
& =\left(\left(P:_{R} M\right)^{-1}:_{R}\left(P:_{R} M\right)\right) \\
& =\left(R:_{T(R)}\left(P:_{R} M\right)\right)=\left(P:_{R} M\right)^{-1}=R .
\end{aligned}
$$

Thus P^{2} is not a divisorial submodule of M, which is a contradiction. Therefore P is an invertible submodule of M and so P is a finitely generated submodule of M. Thus by Lemma 2.1, P is a divisorial submodule of M and so P^{n} is a divisorial submodule of M for each $n \geq 1$. The converse is clear.

It is shown that, if M is a finitely generated multiplication R-module and N a submodule of M, then N is an idempotent submodule of M if and only if $\left(N:_{R} M\right)$ is an idempotent ideal of R.

Theorem 2.5. Let R be an integral domain, M a Prüfer faithful multiplication R-module and P a maximal submodule of M. The following are equivalent:
(1) P^{n} is a divisorial submodule of M for each $n \geq 1$;
(2) $(M: T(P))=P_{0}$, where $P_{0}=\bigcap_{n=1}^{\infty} P^{n}$;
(3) P^{2} is a divisorial submodule of M;
(4) Either $P^{-1} \subset T(P)$ or P is a divisorial idempotent submodule of M.

Proof. (1) \Leftrightarrow (2) Lemma 2.3.
(1) \Leftrightarrow (3) Lemma 2.4.
$(1) \Rightarrow(4)$ Let $P^{-1}=T(P)$. Then, by [2, Lemma 1], $\left(P:_{R} M\right)^{-1}=P^{-1}=T(P)=$ $T\left(\left(P:_{R} N\right)\right)$. Thus, by [11, Theorem 4.1.19], $\left(P:_{R} M\right)$ is an idempotent ideal of R. Hence P is an idempotent submodule of M.
$(4) \Rightarrow(1)$ Let $P^{-1} \subset T(P)$. If $P^{-1}=R$, then by [2, Lemma 1$],\left(P:_{R} M\right)^{-1}=R$. Hence

$$
\begin{aligned}
T(P) & =\bigcup_{n=1}^{\infty}\left(M:_{R_{T}}\left(P:_{R} M\right)^{n} M\right)=\bigcup_{n=1}^{\infty}\left(R:_{T(R)}\left(P:_{R} M\right)^{n}\right) \\
& =\bigcup_{n=1}^{\infty}\left(P:_{R} M\right)^{-n}=R
\end{aligned}
$$

which is a contradiction, because $R \subseteq P^{-1} \subset T(P)$. Therefore P is an invertible submodule of M, [2, Proposition 13]. Then, by Lemma 2.1, P is a finitely generated submodule of M and so P is a divisorial submodule of M. Therefore, by Lemma 2.1, P^{n} is divisorial submodule of M for each $n \geq 1$.

Lemma 2.6. Let R be an integral domain, M a faithful multiplication R-module and N a submodule of M. Then $N^{-1}=\left(N:_{T(R)} N\right)$ if and only if $N N^{-1}=N$.
Proof. Assume that $N^{-1}=\left(N:_{T(R)} N\right)$. Then $\left(N:_{R} M\right)^{-1}=\left(\left(N:_{R} M\right) M:_{T(R)}\right.$ $\left.\left(N:_{R} M\right) M\right)$ and so $\left(N:_{R} M\right)^{-1}\left(N:_{R} M\right) M=\left(\left(N:_{R} M\right) M:_{T(R)}\left(N:_{R}\right.\right.$ $M) M)\left(N:_{R} M\right) M=\left(N:_{T(R)} N\right) N$. Therefore $N^{-1} N=N$. Conversely, if $N N^{-1}=N$, then by [2, Theorem 15], $\operatorname{Tr}_{M}(N)=N N^{-1}=N$. Therefore, by [2, Theorem 15], $N^{-1}=\left(N:_{T(R)} N\right)$.

Recall that a ring R satisfies the radical trace property if $\operatorname{Tr}(I)=\sqrt{I I^{-1}}$ or $\operatorname{Tr}(I)=R$. It is shown that R satisfies the radical trace property if and only if R_{S} satisfies the radical trace property for each multiplicatively closed subset S of R ([11, Theorem 4.2.13]).

Definition 2.7. We say that an R-module M satisfies radical trace property ($R T P$) provided that $\operatorname{Tr}_{M}(N)=M$ or $\operatorname{Tr}_{M}(N)=\sqrt{N N^{-1}}$ for each submodule N of M.
Theorem 2.8. Let R be an integral domain and M a faithful multiplication R module. Then M satisfy RTP if and only if R satisfies RTP.
Proof. Let M satisfy $R T P$ and I an ideal of R. Then $I M$ is a submodule of M. Therefore $(I M)(I M)^{-1}=M$ or $(I M)(I M)^{-1}=\sqrt{(I M)(I M)^{-1}}$. Hence, by
[6, Lemma 6], $I I^{-1}=R$ or $I I^{-1}=\sqrt{I I^{-1}}$ and so R satisfies $R T P$. Conversely, assume that R satisfies $R T P$ and let N be a submodule of M. Then $\left(N:_{R} M\right)$ is an ideal of R. Thus $\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1}=R$ or $\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1}=$ $\sqrt{\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1}}$. So, by [6, Lemma 6], $\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1} M=M$ or $\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1} M=\sqrt{\left(N:_{R} M\right)\left(N:_{R} M\right)^{-1}} M$. Thus, by [2, Lemma 1], $N N^{-1}=M$ or $N N^{-1}=\sqrt{N N^{-1}}$. Therefore M satisfies $R T P$.

Corollary 2.9. Let R be an integral domain, M a faithful multiplication R-module and S a multiplicatively closed subset of R. Then M_{S} satisfies $R T P$ if and only if R_{S} satisfies RTP.

Theorem 2.10. Let M be a faithful multiplication R-module. Then the following are equivalent:
(1) M satisfies $R T P$;
(2) For each multiplicatively closed subset S of R, M_{S} satisfies $R T P$;
(3) For each prime submodule P of $M, \frac{M}{P}$ satisfies $R T P$.

Proof. (1) $\Rightarrow(2)$ Assume that M satisfies $R T P$. Then, by Theorem $2.8, R$ satisfies $R T P$. So, by [11, Theorem 4.2.13], R_{S} satisfies $R T P$. Therefore, by Corollary 2.9, M_{S} satisfies $R T P$.
$(2) \Rightarrow(1)$ Set $S=\{1\}$, then $M=M_{S}$.
$(1) \Rightarrow(3)$ If P is a maximal submodule of M, then $\frac{M}{P}$ is a simple module. Therefore assume that P is a nonmaximal prime submodule of M. Let N be a submodule of M containing P and $K^{\prime}:=\left(\frac{N}{P}\right)\left(\frac{N}{P}\right)^{-1} \neq \frac{M}{P}$. We show that K^{\prime} is a radical submodule of $\frac{M}{P}$. Write $K^{\prime}=\frac{K}{P}$ for some submodule K of M, where K contains P. By [2, Proposition 15], we have

$$
\begin{aligned}
\frac{K^{-1}}{P} & =\left(\frac{M}{P}:_{R_{T}} \frac{K}{P}\right)=\left(\frac{M}{P}:_{R_{T}} K^{\prime}\right)=\left(K^{\prime}\right)^{-1}=\operatorname{Tr}_{\frac{M}{P}}\left(\frac{N}{P}\right)^{-1} \\
& =\left(\operatorname{Tr}_{\frac{M}{P}}\left(\frac{N}{P}\right):_{T(R)} \operatorname{Tr}_{\frac{M}{P}}\left(\frac{N}{P}\right)\right)=\left(K^{\prime}:_{T(R)} K^{\prime}\right)
\end{aligned}
$$

Let $u \in K^{-1}$, then $(u+P) \frac{K}{P} \subseteq \frac{K}{P}$ and so $u K \subseteq K$. Thus $K^{-1} \subseteq\left(K:_{T(R)} K\right)$. On the other hand, by [2, Lemma 1], $\left(K:_{T(R)} K\right) \subseteq K^{-1}$. Hence $K^{-1}=\left(K:_{T(R)} K\right)$ and so by Lemma $2.6, K K^{-1}=K(\neq M)$. Since M satisfies $R T P$, then K is a radical submodule of M. Consequently $\sqrt{K^{\prime}}=\sqrt{\frac{K}{P}}=\frac{\sqrt{K}}{P}=\frac{K}{P}=K^{\prime}$.
$(3) \Rightarrow(1)$ Set $P=0$, then $M \simeq \frac{M}{P}$.
It is obvious that if I and J are ideals of R, then $\left(I:_{R} J\right) M \subseteq\left(I M:_{T(R)} J M\right)$.
Lemma 2.11. Let R be an integral domain, M a faithful multiplication R-module and Q a P-primary submodule of M. If N is a submodule of M containing Q which is not contained in P, then $N^{-1} \subseteq\left(Q:_{T(R)} Q\right)$.
Proof. Since Q is a P-primary submodule of M, then by [2, Lemma 4], $\left(Q:_{R} M\right)$ is a $\left(P:_{R} M\right)$-primary ideal of R. Therefore, by [11, Lemma 4.2.14], $\left(N:_{R} M\right)^{-1} \subseteq$
$\left(\left(Q:_{R} M\right):_{T(R)}\left(Q:_{R} M\right)\right)$. Since, by [2, Lemma 1], $N^{-1}=\left(N:_{R} M\right)^{-1}$, so $N^{-1} \subseteq\left(\left(Q:_{R} M\right):_{T(R)}\left(Q:_{R} M\right)\right) M \subseteq\left(Q:_{T(R)} Q\right)$.
Lemma 2.12. Let R be an integral domain, M a faithful multiplication R-module and Q a P-primary submodule of M. Let N is a submodule of M such that $Q \subseteq N \subseteq$ $Q Q^{-1}$ and $N \nsubseteq P$, Then $N^{-1}=\left(Q Q^{-1}\right)^{-1}=\left(Q Q^{-1}:_{T(R)} Q Q^{-1}\right)=\left(Q:_{T(R)} Q\right)$. Proof. Since $Q \subseteq N \subseteq Q Q^{-1}$, then, by [2, Proposition 15] and Lemma 2.11, we have

$$
\left(Q:_{T(R)} Q\right) \subseteq\left(Q Q^{-1}:_{T(R)} Q Q^{-1}\right)=\left(Q Q^{-1}\right)^{-1} \subseteq N^{-1} \subseteq\left(Q:_{T(R)} Q\right)
$$

Therefore $N^{-1}=\left(Q Q^{-1}\right)^{-1}=\left(Q Q^{-1}:_{T(R)} Q Q^{-1}\right)=\left(Q:_{T(R)} Q\right)$.
Lemma 2.13.([7, Lemma 3.6]) Let R be an integral domain, M a faithful multiplication R-module and N, L submodules of M. Then $\left(N:_{R} M\right)\left(L:_{R} M\right)=\left(N L:_{R} M\right)$.

Proposition 2.14. Let R be an integral domain and M a faithful multiplication R-module. Then M is a discrete Valuation module if and only if each P-primary submodule of M is a power of P.
Proof. Assume that M be a discrete Valuation module and Q a P-primary submodule of M. Then, by [2, Lemma 4], $\left(Q:_{R} M\right)$ is $\left(P:_{R} M\right)$-primary ideal of R. So, By [12, Theorem 1], R is a discrete valuation domain. Thus, by [11, Lemma 5.3.1] and Lemma 2.13, there exists a positive integer n such that $\left(Q:_{R} M\right)=\left(P:_{R} M\right)^{n}=\left(P^{n}:_{R} M\right)$. Therefore $Q=P^{n}$.
Conversely, suppose that Q be a P-primary submodule of M such that for some positive integer $n, Q=P^{n}$. So, by [2, Lemma 4], $\left(Q:_{R} M\right)$ is ($P:_{R} M$)-primary ideal of R. If M is not discrete Valuation module, then by [4, Theorem 1], R is not a discrete Valuation domain. Thus, by [11, Lemma 5.3.1] and Lemma 2.13, $\left(Q:_{R} M\right) \neq\left(P:_{R} M\right)^{n}=\left(P^{n}:_{R} M\right)$ for each positive integer n. Therefore $Q \neq P^{n}$ for each positive integer n, which is a contradiction.

Compare the next results with [12, Theorem 7.2,Theorem 17.1 and Theorem 17.3]

Lemma 2.15. Let R ba an integral domain and M a faithful multiplication R module. Let N and K be two submodules of M such that N is invertible and $K \subseteq N$. Then there exists an ideal I of R such that $K=I N$.

Proof. Let N and K be two submodules of M such that N is invertible and $K \subseteq N$. Then $\left(N:_{R} M\right)$ and $\left(K:_{R} M\right)$ are ideals of R and $\left(N:_{R} M\right)$ is an invertible ideal of R and $\left(K:_{R} M\right) \subseteq\left(N:_{R} M\right)$. Thus, by [12, Theorem 7.2], there exists an ideal I of R such that $\left(K:_{R} M\right)=I\left(N:_{R} M\right)$. Therefore $K=\left(K:_{R} M\right) M=I\left(N:_{R}\right.$ $M) M=I N$.

Lemma 2.16. Let R be an integral domain, K a quotient field of R such that $R \neq K, M$ a Valuation faithful multiplication R-module and N a proper submodule of M. Then $P=\bigcap_{n=1}^{\infty} N^{n}$ is a prime submodule of M.

Proof. It is obvious that $P=\bigcap_{n=1}^{\infty} N^{n}$ is a submodule of M. Since $N \neq M$, then $[N: M$] is a proper ideal of R. Since M is Valuation module, then R is Valuation domain and so by [12, Theorem 17.1] and Lemma 2.13, $P_{0}=\bigcap_{n=1}^{\infty}[N$: $M]^{n}=\bigcap_{n=1}^{\infty}\left[N^{n}: M\right]$ is a prime ideal of R. Therefore, by [9, Lemma 2.10], $P=\bigcap_{n=1}^{\infty}\left[N^{n}: M\right] M=\bigcap_{n=1}^{\infty} N^{n}$ is a prime submodule of M.
Lemma 2.17. Let R be an integral domain, K a quotient field of R such that $R \neq K$ and M a Valuation faithful multiplication R-module. Then the product of two P-primary submodules of M is a P-primary submodule of M.
Proof. Let N_{1} and N_{2} be two P-primary submodules of M. Clearly $N_{1} N_{2}$ is a submodule of M. Then, by [2, Lemma 1], $\left(N_{1}:_{R} M\right)$ and $\left(N_{2}:_{R} M\right)$ are $\left(P:_{R} M\right)$ primary ideals of R. Since M is Valuation module, then R is Valuation domain and so by [12, Theorem 17.3] and Lemma 2.13, $\left(N_{1}:_{R} M\right)\left(N_{2}:_{R} M\right)=\left(N_{1} N_{2}:_{R} M\right)$ is a $\left(P:_{R} M\right)$-primary ideal of R. Therefore by [2, Lemma 4], $N_{1} N_{2}=\left(N_{1} N_{2}:_{R}\right.$ $M) M$ is a $P=\left(P:_{R} M\right) M$-primary submodule of M.

Theorem 2.18. Let R be an integral domain, K a quotient field of R such that $R \neq K$ and M a Valuation faithful multiplication R-module. If $P \neq P^{2}$ is a prime submodule of M, then each P-primary submodule of M is a power of P.
Proof. Since P is a prime submodule of M, then P is a primary submodule of M. Also $\left(P:_{R} M\right)$ is a prime ideal of R, so $\left(P:_{R} M\right)$ is $\left(P:_{R} M\right)$-primary ideal of R. Then, by [2, Lemma 4], P is P-primary submodule of M. So, by Lemma 2.17, each power of P is a P-primary submodule of M.
Now, let Q be a P-primary submodule of M. Then by [2, Lemma 4], $\left(Q:_{R} M\right)$ is a $\left(P:_{R} M\right)$-primary ideal of R. If $Q \subseteq P^{n}$ for each positive integer n, then $Q \subseteq \bigcap_{n=1}^{\infty} P^{n}$ and by Lemma 2.16, $P_{0}=\bigcap_{n=1}^{\infty} P^{n}$ is a prime submodule of M. Since $P_{0} \subseteq P^{2} \neq P$, then $P_{0} \varsubsetneqq P$. Since $Q \subseteq \bigcap_{n=1}^{\infty} P^{n}=P_{0}$, then $\left(Q:_{R} M\right) \subseteq$ $\left(P_{0}:_{R} M\right)$ and so $\sqrt{\left(Q:_{R} M\right)} \subseteq \sqrt{\left(P_{0}:_{R} M\right)}$. Thus $\left(P:_{R} M\right) \subseteq\left(P 0:_{R} M\right)$ and so $P=\left(P:_{R} M\right) M \subseteq\left(P_{0}:_{R} M\right) M=P_{0}$, which is a contradiction. Therefore there exists a positive integer n such that $Q \nsubseteq P^{n}$. Since M is a Valuation module, then $P^{n} \subseteq Q$. Suppose that m is the smallest positive integer such that $P^{m} \subseteq Q$. Thus $Q \varsubsetneqq P^{m-1}$. choose $x \in M$ such that $x \in P^{m-1}$ and $x \notin Q$. Since M is a Valuation module, then $Q \subseteq(x)$. On the other hand (x) is a principal submodule of M and so is an invertible submodule of M. Therefore, by Lemma 2.15 , there exists an ideal I of R such that $Q=I .(x)$. Thus $Q \subseteq I$. So for each $a \in I$, $a x \in I .(x)=Q$. We know that $R a$ is an ideal of R and $a \in R a \subseteq R$. Since $a x \in Q$ and Q is a P-primary submodule of M and $x \notin Q$, so $a \in \sqrt{\left(Q:_{R} M\right)}=P$. Thus $I \subseteq P$. Then $Q=I .(x) \subseteq P P^{m-1}=P^{m}$. Therefore $Q=P^{m}$.
3. When $(N \cap L)^{-1}$ is a Ring?

Theorem 3.1. Let R be an integral domain, M a faithful multiplication R-module and N, L coprime radical submodules of M. Then the following are equivalent: (1) N^{-1} and L^{-1} are rings.
(2) $(N \cap L)^{-1}$ and $(N+L)^{-1}$ are rings.

Moreover, $(N+L)^{-1}=\left(N+L:_{T(R)} N+L\right)$.
Proof. (1) $\Rightarrow(2)$ Let N^{-1} and L^{-1} be rings. Then, by [2, Lemma 1], $\left(N:_{R} M\right)^{-1}$ and $\left(L:_{R} M\right)^{-1}$ are rings. So $\left(N:_{R} M\right)^{-1}+\left(L:_{R} M\right)^{-1}$ is a ring. Thus $N^{-1}+L^{-1}$ is a ring. Since $N+L=M$, therefore by [2, Lemma 2], $(N \cap L)^{-1}=N^{-1}+L^{-1}$ is a ring. Also, by [2, Lemma 2] we have

$$
\begin{aligned}
(N+L)^{-1} & =\left(\left(N:_{R} M\right) M+\left(L:_{R} M\right) M\right)^{-1}=\left(\left(\left(N:_{R} M\right)+\left(L:_{R} M\right)\right) M\right)^{-1} \\
& =\left(\left(N:_{R} M\right)+\left(L:_{R} M\right)\right)^{-1}=\left(N:_{R} M\right)^{-1} \cap\left(L:_{R} M\right)^{-1} \\
& =N^{-1} \cap L^{-1} .
\end{aligned}
$$

Since $N^{-1} \cap L^{-1}$ is a ring, then $(N+L)^{-1}$ is a ring.
$(2) \Rightarrow(1)$ Let $(N \cap L)^{-1}$ and $(N+L)^{-1}$ are rings. Then, by [2, Lemma 1], $\left(N \cap L:_{R}\right.$ $M)^{-1}$ and $\left(N+L:_{R} M\right)^{-1}$ are rings. Therefore, by [10, Theorem 3.4], $\left(N:_{R} M\right)^{-1}$ and $\left(L:_{R} M\right)^{-1}$ are rings. So, by [2, Lemma 1], N^{-1} and L^{-1} are rings.
Now we show that $(N+L)^{-1}=\left(N+L:_{T(R)} N+L\right)$. By [2, Lemma 1], $(N+$ $\left.L:_{T(R)} N+L\right) \subseteq(N+L)^{-1}$. For the other inclusion, by [2, Lemma 2], we have $(N+L)^{-1}=N^{-1} \cap L^{-1}$. Let $x \in N^{-1} \cap L^{-1}$, then by [2, Proposition 11] $x \in N^{-1}=\left(N:_{T(R)} N\right)$ and so $x N \subseteq N$. Similary $x \in L^{-1}=\left(L:_{T(R)} L\right)$, so $x L \subseteq L$ and thus $x(N+L)=x N+x L \subseteq N+L$ and therefore $x \in\left(N+L:_{T(R)}\right.$ $N+L)$.

By induction we have the following corollary.
Corollary 3.2. Let R be an integral domain and M a faithful multiplication R module. Let N_{1}, \ldots, N_{n} be radical submodules of M such that $N_{i}+N_{j}=M$ for $1 \leq i, j \leq n$ and $i \neq j$. If $N_{1}^{-1}, \ldots, N_{n}^{-1}$ are rings, then $\left(N_{1} \cap \ldots \cap N_{n}\right)^{-1}$ is a ring.
Proposition 3.3. Let R be an integral domain, M a faithful multiplication R module and N a nonzero submodule of M such that N^{-1} is a ring. Then $(\sqrt{N})^{-1}$ is a ring and $(\sqrt{N})^{-1}=\left(\sqrt{N}:_{T(R)} \sqrt{N}\right)$.
Proof. Suppose that $x \in(\sqrt{N})^{-1}$. For each $a \in \sqrt{N}=\sqrt{\left(N:_{R} M\right)} M$ there exists a positive integer number n such that $a^{n} \in\left(N:_{R} M\right) M=N$. Since $N=\left(N:_{R}\right.$ $M) M \subseteq \sqrt{\left(N:_{R} M\right)} M=\sqrt{N}$, then $(\sqrt{N})^{-1} \subseteq N^{-1}$ and so $x \in N^{-1}$. Since N^{-1} is a ring, then $x^{2 n} \in N^{-1}$. So $a^{n} x^{2 n} \in N N^{-1} \subseteq M$. Thus $(a x)^{2 n}=a^{n}\left(a^{n} x^{2 n}\right) \in$ $N M \subseteq N$ and it follows that $a x \in \sqrt{N}$. Then $x \sqrt{N} \subseteq \sqrt{N}$ and so $x \in\left(\sqrt{N}:_{T(R)}\right.$ $\sqrt{N})$. On the other hand, by [2, Lemma 1], $\left(\sqrt{N}:_{T(R)} \sqrt{N}\right) \subseteq(\sqrt{N})^{-1}$. Therefore $(\sqrt{N})^{-1}=\left(\sqrt{N}:_{T(R)} \sqrt{N}\right)$ is a ring.
Corollary 3.4. Let R be a integral domain, M a faithful multiplication R-module and N, L coprime submodules of M. If N^{-1} and L^{-1} are rings, then $(\sqrt{N} \cap \sqrt{L})^{-1}$ and $(\sqrt{N}+\sqrt{L})^{-1}$ are rings.
Proof. Let N^{-1} and L^{-1} be rings. Then, by Proposition $3.3,(\sqrt{N})^{-1}$ and $(\sqrt{L})^{-1}$ are rings. Since $M=N+L \subseteq \sqrt{N}+\sqrt{L} \subseteq M$, then $\sqrt{N}+\sqrt{L}=M$. Moreover \sqrt{N} and \sqrt{L} are radical submodules. Therefore, by Theorem 3.1, we are done.

Lemma 3.5. Let R be a ring and M an R-module. Then $\left(N_{\nu}\right)^{-1}=N^{-1}$.
Proof. Since $N N^{-1} \subseteq M$, then $N \subseteq\left(M:_{R_{T}} N^{-1}\right)=\left(N^{-1}\right)^{-1}=N_{\nu}$. So $\left(N_{\nu}\right)^{-1} \subseteq$ N^{-1}. For the other inclusion, let $x \in N_{\nu}=\left(M:_{R_{T}} N^{-1}\right)$. Then $x N^{-1} \subseteq M$ and hence $N_{\nu} N^{-1} \subseteq M$. Thus $N^{-1} \subseteq\left(M:_{R_{T}} N_{\nu}\right)=\left(N_{\nu}\right)^{-1}$. Therefore $\left(N_{\nu}\right)^{-1}=$ N^{-1}.

Theorem 3.6. Let R be an integral domain, M a faithful multiplication R-module and N, K coprime submodules of M such that $N^{-1} \cap K^{-1}=R$. Then the following are equivalent:
(1) N^{-1} and L^{-1} are rings.
(2) $(N \cap L)^{-1}$ is a ring.
(3) $\left(N_{\nu} \cap L_{\nu}\right)^{-1}$ is a ring.

Moreover, $(N \cap L)^{-1}=\left(N_{\nu} \cap L_{\nu}\right)^{-1}=(N L)^{-1}=\left(N_{\nu} L_{\nu}\right)^{-1}$.
Proof. (1) $\Rightarrow(2)$ Let N^{-1} and L^{-1} be rings. Then $N^{-1}+L^{-1}$ is a ring. Therefore, by [2, Lemma 2], $(N \cap L)^{-1}=N^{-1}+L^{-1}$ is a ring.
(2) $\Rightarrow(1)$ Let $(N \cap L)^{-1}$ be a ring. Then, by [2, Lemma 1], $\left(N \cap L:_{R} M\right)^{-1}=$ $\left(\left(N:_{R} M\right) \cap\left(L:_{R} M\right)\right)^{-1}$ is a ring. Hence, by [10, Theorem 3.7], $\left(N:_{R} M\right)^{-1}$ and $\left(L:_{R} M\right)^{-1}$ are rings. Therefore, by [2, Lemma 1$], N^{-1}$ and L^{-1} are rings. If N^{-1} and L^{-1} are rings, then, by Lemma 3.5, $\left(N_{\nu}\right)^{-1}$ and $\left(L_{\nu}\right)^{-1}$ are rings. Since (1) and (2) are equivalent, it follows that $\left(N_{\nu} \cap L_{\nu}\right)^{-1}$ is a ring.

For the last equality, by [2, Lemma 1] we have $N^{-1}=\left(N:_{R} M\right)^{-1}$ and $N_{\nu}=\left(N:_{R}\right.$ $M)_{\nu}$. Therefore $(N \cap L)^{-1}=\left(N_{\nu} \cap L_{\nu}\right)^{-1}=(N L)^{-1}=\left(N_{\nu} L_{\nu}\right)^{-1}$.

Proposition 3.7. Let R be an integral domain, M a faithful multiplication R module and N a radical submodule of M such that $N=K \cap L$ for submodules K, L of M. Then N^{-1} is a ring if and only if there are radical submodules $K_{1} \supseteq K$ and $L_{1} \supseteq L$ of M such that $N=K_{1} \cap L_{1}$ and K_{1}^{-1} and L_{1}^{-1} are rings.
Proof. Let N be a radical submodule of M such that $N=K \cap L$ for submodules K, L of M. Then $\left(N:_{R} M\right)$ is a radical ideal of R and $\left(N:_{R} M\right)=\left(K \cap L:_{R} M\right)=$ $\left(K:_{R} M\right) \cap\left(L:_{R} M\right)$. Now, if N^{-1} is a ring, then by [2, Lemma 1], $\left(N:_{R} M\right)^{-1}$ is a ring and so by [10, Corollary 3.12], there are radical ideals $A \supseteq\left(K:_{R} M\right)$ and $B \supseteq\left(L:_{R} M\right)$ such that $\left(N:_{R} M\right)=A \cap B$ and A^{-1} and B^{-1} are rings. Therefore, there exist radical submodules $A M \supseteq\left(K:_{R} M\right) M=K$ and $B M \supseteq\left(L:_{R} M\right) M=$ L such that $N=A M \cap B M$ and A^{-1} and B^{-1} are rings, by [2, Lemma 1].
Conversely, suppose that there are radical submodules $K_{1} \supseteq K$ and $L_{1} \supseteq L$ of M such that $N=K_{1} \cap L_{1}$ and K_{1}^{-1} and L_{1}^{-1} are rings. Then, by [2, Lemma 1] and [6, Lemma 6], there are radical ideals $\left(K_{1}:_{R} M\right) \supseteq\left(K:_{R} M\right)$ and $\left(L_{1}:_{R} M\right) \supseteq$ $\left(L:_{R} M\right)$ of R such that $\left(N:_{R} M\right)=\left(K_{1}:_{R} M\right) \cap\left(L_{1}:_{R} M\right)$ and $\left(K_{1}:_{R} M\right)^{-1}$ and $\left(L_{1}:_{R} M\right)^{-1}$ are rings. Therefore, by [10, Corollary 3.12], $\left(N:_{R} M\right)^{-1}$ is a ring and so by $[2$, Lemma 1$], N^{-1}$ is a ring.

Definition 3.8. Let R be an ring, M an R-module and $\left\{K_{\alpha}\right\}_{\alpha \in \Lambda}$ a non-empty set of prime submodules of M. We say that $N=\bigcap_{\alpha \in \Lambda} K_{\alpha}$ is irredundant, if for each $\beta \in \Lambda, \bigcap_{\alpha \neq \beta} K_{\alpha} \nsubseteq K_{\beta}$.

Lemma 3.9. Let R be an integral domain, M a faithful multiplication R-module and $\left\{K_{\alpha}\right\}_{\alpha \in \Lambda}$ a non-empty set of prime submodules of M. Then $N=\bigcap_{\alpha \in \Lambda} K_{\alpha}$ is an irredundant submodule of M if and only if $\left(N:_{R} M\right)=\left(\bigcap_{\alpha \in \Lambda} K_{\alpha}:_{R} M\right)$ is an irredundant ideal of R.
Proof. Let $N=\bigcap_{\alpha \in \Lambda} K_{\alpha}$ be an irredundant submodule of M. Since K_{α} is a prime submodule of M, then $\left(K_{\alpha}:_{R} M\right)$ is a prime ideal of R. If there exists $\beta \in \Lambda$ such that $\left(\bigcap_{\alpha \in \Lambda} K_{\alpha}:_{R} M\right) \subseteq\left(K_{\beta}:_{R} M\right)$, then $\bigcap_{\alpha \neq \beta} K_{\alpha}=\left(\bigcap_{\alpha \neq \beta} K_{\alpha}:_{R} M\right) M \subseteq$ $\left(K_{\beta}:_{R} M\right) M=K_{\beta}$, which is a contradiction. Therefore, $\left(N:_{R} M\right)=\left(\bigcap_{\alpha \in \Lambda} K_{\alpha}:_{R}\right.$ $M)$ is an irredundant ideal of R. The converse is similar.

Theorem 3.10. Let R be an integral domain, M a faithful multiplication R-module and $\left\{K_{\alpha}\right\}_{\alpha \in \Lambda}$ a non-empty set of prime submodules of M. If $N=\bigcap_{\alpha \in \Lambda} K_{\alpha}$ is a nonzero and irredundant submodule of M, then the following are equivalent:
(1) N^{-1} is a ring;
(2) For each $\alpha \in \Lambda, K_{\alpha}^{-1}$ is a ring;
(3) For each non-empty subset Γ of $\Lambda,\left(\bigcap_{\alpha \in \Gamma} K_{\alpha}\right)^{-1}$ is a ring.

Proof. Let $\left\{K_{\alpha}\right\}_{\alpha \in \Lambda}$ be a non-empty set of prime submodules of M. Then $\left\{\left(K_{\alpha}:_{R} M\right)\right\}_{\alpha \in \Lambda}$ is a non-empty set of prime ideals of R. If $N=\bigcap_{\alpha \in \Lambda} K_{\alpha}$ is a nonzero and irredundant submodule of M, then by Lemma 3.9, $\left(N:_{R} M\right)=$ $\left(\bigcap_{\alpha \in \Lambda} K_{\alpha}:_{R} M\right)=\bigcap_{\alpha \in \Lambda}\left(K_{\alpha}:_{R} M\right)$ is a nonzero irredundant ideal of R.
$(1) \Rightarrow(2)$ Let N^{-1} be a ring. Then, by [2, Lemma 1$],\left(N:_{R} M\right)^{-1}$ is a ring. Therefore, by [10, Proposition 3.13], $\left(K_{\alpha}:_{R} M\right)^{-1}$ is a ring and so by [2, Lemma 1], K_{α}^{-1} is a ring.
$(2) \Rightarrow(3)$ Let Γ be a non-empty subset of Λ and $L=\bigcap_{\alpha \in \Gamma} K_{\alpha}$. Then $\left(L:_{R}\right.$ $M)=\left(\bigcap_{\alpha \in \Gamma} K_{\alpha}:_{R} M\right)=\bigcap_{\alpha \in \Gamma}\left(K_{\alpha}:_{R} M\right)$. Therefore, by [10, Proposition 3.13], $\left(L:_{R} M\right)^{-1}$ is a ring and so by [2, Lemma 1$], L^{-1}$ is a ring.
(3) \Rightarrow (2) It is obvious.

References

[1] M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math., 35(2006), 17-29.
[2] M. M. Ali, Invertibility of multiplication modules Π, New Zealand J. Math., 39(2009), 45-64.
[3] M. M. Ali, Some remarks on generalized GCD domains, Comm. Algebra, 36(2008), 142-164.
[4] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math., 39(2009), 139-213.
[5] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36(2008), 4620-4642.
[6] M. M. Ali, The transform formula for submodules of multiplication modules, New Zealand J. Math., 41(2011), 25-37.
[7] R. Ameri, On the prime submodules of multiplication modules, Internat. J. Math. Math. Sci., 27(2003), 1715-1724.
[8] A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178.
[9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1998), 755-799.
[10] E. Houston, S. Kabbaj, T. Lucas and A. Mimouni When is the dual of an ideal a ring?, J. Algebra, 225(2000), 429-450.
[11] M. Fontana, J. Hukaba and I. Papick, Prüfer Domains, Marcel Dekker, (1997).
[12] R. Gilmer, Multiplicative ideal theory, Marcel Dekker: New York, (1972).
[13] M. D. Larsen and P. J. MacCaarthy, Multiplication theory of ideal, Academic Press: New York, (1971).
[14] A. G. Naoum, Flat modules and multiolication modules, Periodica. Math. Hungar., 21(1990), 309-317.
[15] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(1996), 225-230.
[16] P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-799.
[17] P. F. Smith, Some remarks on multiplication modules, Arch. der. Math., 50(1988), 223-235.

[^0]: * Corresponding Author.

 Received August 22, 2014; accepted May 13, 2015
 2010 Mathematics Subject Classification: 16N99, 16S99.
 Key words and phrases: divisorial submodule, prime submodule, radical submodule, multiplication module.
 This work was supported by the University of Mohaghegh Ardabili.

