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ABSTRACT. This paper is devoted to study the divisorial submodules. We get some
equivalent conditions for a submodule to be a divisorial submodule. Also we get equivalent
conditions for (N N L)™! to be a ring, where N, L are submodules of a module M.

1. Introduction

Throughout this paper all rings are considered commutative rings with identiry
and all modules are considered unitary. Let R be a commutative ring with identity
and let M be an R-module. M is called a multiplication module if every submodule
N of M has the form I'M for some ideal I of R. Let M be a multiplication R-
module and N a submodule of M. Then N = IM for some ideal I of R. Hence
IC(N:g M)andso N=IM C (N :g M)M C N. Therefore N = (N :g M)M
[8]. Let R be an integral domain, M a faithful multiplication R-module and N, L
submodules of M. Then (N :g M)(L :g M) = (NL :g M) [7, Lemma 3.6].
Therefore NL = (NL :p M)M. Thus we get N* = (N" :p M)M. An R-module M
is called a cancellation module if IM = JM for two ideals I and J of R implies I = J
[3]. By [17, Corollary 1 to Theorem 9], finitely generated faithful multiplication
modules are cancellation modules. It follows that if M is a finitely generated faithful
multiplication R-module, then (IN :p M) = I(N :g M) for all ideals I of R and
all submodules N of M. If R is an integral domain and M a faithful multiplication
R-module, then M is a finitely generated R-module [9].

Let S be the set of all non-zero divisors of R and T'(R) = Rg the total quotient
ring of R. For a nonzero ideal I of R, let I = {x € T(R) : xI C R}. An ideal I
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of R is called invertible, if II~* = R. Let M be an R-module and set
T={teS: forall m e M,tm = 0 implies m = 0}.

Then T is a multiplicatively closed subset of R with 7' C S, and if M is torsion-
free then T' = S. In particular, T'= S if M is a faithful multiplication R-module
[9, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write N=1 =
(M :gp, N)={z € Rr : zkN C M} and N, = (N"})~!. Then N~! is an R-
submodule of Ry, RC N~! and NN~! C M. We say that N is invertible in M if
NN~! = M. Clearly 0 # M is invertible in M. If I is an invertible ideal of R then
IM is invertible in M and the converse is true if M is a finitely generated faithful
multiplication R-module [15]. Every invertible submodule N of a finitely generated
faithful multiplication R-module M is finitely generated faithful multiplication and
the converse is true if R is an integral domain [1]. An R-module M is called a
Dedekind module (resp., Priifer module) if every nonzero submodule (resp., every
nonzero finitely generated submodule) of M is invertible [15]. An R-module M
is called a valuation module if for all m,n € M, either Rm C Rn or Rn C Rm.
Equivalently, M is a valuation module if for all submodules N and K of M, either
NCKor KCN [4].

Following [3], a submodule N of M is called a divisorial submodule of M in
case N = N, M. If M is a finitely generated faithful multiplication R-module, then
N, = (N :g M). Consequently, M, = R. Let M be a finitely generated faithful
multiplication R-module, N a submodule of M and I an ideal of R. Then N is a
divisorial submodule of M if and only if (N :g M) is a divisorial ideal of R. Also
I is divisorial ideal of R if and only if IM is a divisorial submodule of M [2]. If N
is an invertible submodule of a faithful multiplication module M over an integral
domain R, then (N :p M) is invertible hence a divisorial ideal of R. So N is a divi-
sorial submodule of M [2]. If R is an integral domain, M a faithful multiplication
R-module and N a nonzero submodule of M, then N, = (N :g M), [2, Lemma 1].
A submodule N of an R-module M is called an idempotent submodule of M if
N = (N :g M)N. It is shown that, if M is a multiplication R-module and N
a submodule of M such that (N :p M) is an idempotent ideal of R, then N is
an idempotent submodule of M. The converse is true if M is a finitely generated
faithful multiplication R-module [5, Theorem 3]. We say that a submodule N of
M is a radical submodule of M if N = /N, where VN = (N:g M)M. If
a€ VN =/(N:g M)M, then a™ € (N :g M)M = N. Also, N = (N :zp M)M C
V(N :g M)M = /N. Tt is shown that if R is an integral domain, M a faithful
multiplication R-module and N a submodule of M, then NV is a radical submodule
of M if and only if (N :g M) is a radical ideal of R [6, Lemma 6]. Let R be a
ring and M a finitely generated multiplication R-module. Then @ is a P-primary
submodule of M if and only if (Q :g M) is a (P :p M)-primary ideal of R [2,
Lemma 4].

Let R be a an integral domain, M a faithful multiplication R-module and N a
submodule of M. Then T(N) = [Jo2 (M :x (N;M)"M). Furthermore, if M is

n=1
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finitely generated, then T(N) = J;2 (R :x (N :g M)") =T((N :g M)), [2].

An integral domain R is said to satisfy the trace property (T'P) provided that
Tr(M) = X teHom(,r) f(M) either equals R or is a prime ideal of R for each
R-module M [11]. An R-module M satisfies trace property (TP) if Try(N) = M
or Trp(N) is a prime submodule for each nonzero submodule N of M, where
Tray(N) = X semromn, ) f(V), [2]. 1t is proved that if R is a ring, M an R-module
and N a submodule of M, then Try;(N)~! = (T'rp(N) :r, Trar(N)). Moreover if
M is a finitely generated faithful multiplication R-module, then Trp(N) = NN~1
[2, Theorem 15].

In section 2, we generalize some properties of dividorial ideals of an integral domain
to modules. In Lemma 2.1, we get equivalent conditions for a submodule to be a
divisorial submodule. Let R be an integral domain, M a Priifer faithful multipli-
cation R-module and P a maximal submodule of M. Then each power of P is a
divisorial submodule of M if and only if P? is a divisorial submodule of M (Lemma
2.4). In Theorem 2.5, we imply other equivalent conditions for each power of P to
be divisorial submodule. An R-module M satisfies radical trace property (RTP)
provided Trp (N) = M or Try(N) = VNN~ for each submodule N of M. In
Theorem 2.8, we show that if R is an integral domain and M a faithful multiplica-
tion R-module, then M satisfies RT P if and only if R satisfies RT'P. In Theorem
2.9, we give equivalent conditions for M to satisfies RT'P. In proposition 2.14, we
show that, if R is an integral domain and M a faithful multiplication R-module,
then M is a discrete Valuation module if and only if each P-primary submodule of
M is a power of P. Let R ba an integral domain and M a faithful multiplication
R-module. Let N and K be two submodules of M such that N is invertible and
K C N. Then there exists an ideal I of R such that K = IN (Lemma 2.15). Let R
be an integral domain, K a quotient field of R such that R # K and M a Valuation
faithful multiplication R-module. Then the product of two P-primary submodules
of M is a P-primary submodule of M (Lemma 2.17). In Theorem 2.18, we prove
that, if R is an integral domain, K a quotient field of R such that R # K and M a
Valuation faithful multiplication R-module and if P # P? is a prime submodule of
M, then each P-primary submodule of M is a power of P.

In section 3, we give equivalent conditions for N~! and L~ to be rings, where N, L
are submodules of R-module M. let R be a ring and IV, L be two submodules of an
R-module M. Then N and L are coprime if N + L = M [2]. Let R be an integral
domain, M a faithful multiplication R-module and N, L coprime submodules of M.
We get equivalent conditions for (NN L)~! to be a ring (Theorem 3.1 and Theorem
3.6). In Proposition 3.7, we show that if R is an integral domain, M a faithful
multiplication R-module and N a radical submodule of M such that N = K N L
for submodules K, L of M, then N~! is a ring if and only if there are radical sub-
modules K1 O K and Ly O L of M such that N = K; N Ly and K1_1 and L1_1 are
rings.
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2. Divisorial Submodules

Compare the next results with [11, Lemma 4.1.8, Lemma 4.1.16, Proposition
4.1.17, Corollary 4.1.18, Theorem 4.1.19, Theorem 4.2.13, Lemma 4.2.14, Lemma
4.2.15 and Lemma 5.3.1]. We start with the following lemma.

Lemma 2.1. Let R be an integral domain and M a Prifer faithful multiplication
R-module. If P is a mazimal submodule of M, then the following are equivalent:
(1) P is a divisorial submodule of M ;

(2) P" is a divisorial submodule of M for each positive integer n;

(3) P is a finitely generated submodule of M(i.e. P is an invertible submodule of
Proof. (1) = (3) If P is not an invertible submodule of M, then P~! = R, [2,
Proposition 13]. Since P is a divisorial submodule of M, then

P=P Y '=R'=R

which is a contradiction, because R is invertible. Therefore P is an invertible
submodule of M.

(3) = (2) If P is a finitely generated submodule of M, then so is P™ for each positive
integer n. So P" is an invertible submodule of M. Thus P~" is not a subring of
T(R), [2, Proposition 11]. Therefore P™ is a divisorial submodule of M for each
positive integer n, [2, Proposition 14].

(2) = (1) It is clear. O

Lemma 2.2. Let R be an integral domain, M a faithful multiplication R-module
and N a submodule of M. Then (M :g, T(N)) =2, (N"),.

Proof. By [2, Lemma 1], we have (N :g M), = N,.. Therefore

(M i, T(N)) = (M, GfM e (N 2 M)Y"AM))
— (Mon, QW M)~ M)
- fj(M e (N 1 M)~
= nﬁl(R r(r) (N :r M)~ )=nﬁ1((N rM)™")7!
- ﬁluv o M) = ﬁle

Proposition 2.3. Let R be an integral domain, M a faithful multiplication R-
module and P a mazximal submodule of M. Then P™ is divisorial for each positive
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integer n if and only if (M :g, T(P)) = Py, where Py = (., P™.

n=1
Proof. Let P™ be a divisorial submodule of M for each positive integer n. By
Lemma 2.2, (02, P" = (., (P"), = (M :g, T(P)).
For converse, assume that P is a maximal submodule of M. If P~! = R, then by
[2, Lemma 1], (P :g M)~! = R. Hence by induction we have

P = (P ‘R M)_" = (R 'T(R) (P ‘R M)n)
= (Rupry (P:g M)" ' i (P M))
= (P M)"" D g (P g M)
= (Ripmy (P:rM))=(P:g M)"' =P =R
Thus
T(P) = |JM gy (Pip M)"M) = | J (R iz (Pir M)")
= Jewmy=J@rm) =@ =R

Then (M :g, T(P)) = (M :g, R) = M, which is a contradiction. Hence P is a
invertible submodule of M, [2, Proposition 13]. So by Lemma 2.1, P is a finitely
generated submodule of M. Then, by Lemma 2.1, P" is a divisorial submodule of
M for each positive integer n. O

Lemma 2.4. Let R be an integral domain, M a Prifer faithful multiplication R-
module and P a mazximal submodule of M. Then each power of P is a divisorial
submodule of M if and only if P? is a divisorial submodule of M.

Proof. Assume that P2 is a divisorial submodule of M. If P is not invertible, then
P~1 = R, [2, Proposition 13]. Then, by [2, Lemma 1], (P :p M)~! = R. So, by [2,
Lemma 1], we have

P2 = (P:p M)"®=(R:qpg) (P:r M)?)

= (R:pry (P:r M) :g (P:gr M))
(P:g M)™":p (P :g M))
= (R (P:r M))=(P:rg M)"' =R.

Thus P? is not a divisorial submodule of M, which is a contradiction. Therefore
P is an invertible submodule of M and so P is a finitely generated submodule of
M. Thus by Lemma 2.1, P is a divisorial submodule of M and so P" is a divisorial
submodule of M for each n > 1. The converse is clear. O

It is shown that, if M is a finitely generated multiplication R-module and N a
submodule of M, then N is an idempotent submodule of M if and only if (N :g M)
is an idempotent ideal of R.
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Theorem 2.5. Let R be an integral domain, M a Prifer faithful multiplication
R-module and P a maximal submodule of M. The following are equivalent:

(1) P"™ is a divisorial submodule of M for each n > 1;

(2) (M :T(P)) = Py, where Py =(\,—, P";

(3) P? is a divisorial submodule of M ;
(4) Either P~Y C T(P) or P is a divisorial idempotent submodule of M.

Proof. (1) & (2) Lemma 2.3.

(1) & (3) Lemma 2.4.

(1) = (4) Let P! = T(P). Then, by [2, Lemma 1], (P :g M)~' = P~ =T(P) =
T((P :g N)). Thus, by [11, Theorem 4.1.19], (P :g M) is an idempotent ideal of
R. Hence P is an idempotent submodule of M.

(4) = (1) Let P~ Cc T(P). If P! = R, then by [2, Lemma 1], (P :g M)~ = R.
Hence

(@
(@

TP) = (M gy (P:p M)"M) = | J(R:rr) (P:r M)")

1

3
Il
_

n

[
(@

(P:g M)™" =R

Il
-

n

which is a contradiction, because R C P~! C T(P). Therefore P is an invertible
submodule of M, [2, Proposition 13]. Then, by Lemma 2.1, P is a finitely generated
submodule of M and so P is a divisorial submodule of M. Therefore, by Lemma
2.1, P™ is divisorial submodule of M for each n > 1. O

Lemma 2.6. Let R be an integral domain, M a faithful multiplication R-module
and N a submodule of M. Then N~1 = (N :rry N) if and only if NN-1=N.

Proof. Assume that N~ = (N :p(gy N). Then (N :g M)~' = (N :g M)M :p(g)
(N ‘R M)M) and so (N ‘R M)il(N ‘R M)M = ((N ‘R M)M ‘T(R) (N ‘R
M)M)(N :g M)M = (N :pry N)N. Therefore N"'N = N. Conversely, if
NN~ = N, then by [2, Theorem 15|, Try;(N) = NN~! = N. Therefore, by [2,
Theorem 15], N~ = (N ‘rr)y N). O

Recall that a ring R satisfies the radical trace property if Tr(I) = VII~! or
Tr(I) = R. Tt is shown that R satisfies the radical trace property if and only if
Rg satisfies the radical trace property for each multiplicatively closed subset S of
R ([11, Theorem 4.2.13]).

Definition 2.7. We say that an R-module M satisfies radical trace property (RT P)
provided that Trp (N) = M or Trpy(N) = VNN~ for each submodule N of M.
Theorem 2.8. Let R be an integral domain and M a faithful multiplication R-
module. Then M satisfy RT P if and only if R satisfies RTP.

Proof. Let M satisfy RTP and I an ideal of R. Then IM is a submodule of
M. Therefore (IM)(IM)™' = M or (IM)(IM)~* = \/(IM)(IM)~!. Hence, by
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[6, Lemma 6], [I7! = Ror II"! = vII-! and so R satisfies RTP. Conversely,
assume that R satisfies RT'P and let N be a submodule of M. Then (N :p M)
is an ideal of R. Thus (N :g M)(N :g M)™! = Ror (N :g M)(N :g M)~ =
V(N :g M)(N :g M)~1. So, by [6, Lemma 6], (N :g M)(N :g M)"*M = M or
(N :g M)(N :g M)™*M = /(N :g M)(N :g M)~*M. Thus, by [2, Lemma 1],
NN—!'=Mor NN~! =V NN~ Therefore M satisfies RT P. O

Corollary 2.9. Let R be an integral domain, M a faithful multiplication R-module
and S a multiplicatively closed subset of R. Then Mg satisfies RT P if and only if
Rg satisfies RTP.

Theorem 2.10. Let M be a faithful multiplication R-module. Then the following
are equivalent:

(1) M satisfies RTP;

(2) For each multiplicatively closed subset S of R, Mg satisfies RT P;

(3) For each prime submodule P of M, % satisfies RTP.

Proof. (1) = (2) Assume that M satisfies RTP. Then, by Theorem 2.8, R satisfies
RTP. So, by [11, Theorem 4.2.13], Rg satisfies RT'P. Therefore, by Corollary 2.9,
Mg satisfies RTP.

(2) = (1) Set S = {1}, then M = Ms.

(1) = (3) If P is a maximal submodule of M, then % is a simple module. Therefore
assume that P is a nonmaximal prime submodule of M. Let N be a submodule
of M containing P and K' := (£)(%)7! # . We show that K’ is a radical

submodule of %. Write K/ = % for some submodule K of M, where K contains

P. By [2, Proposition 15|, we have

K1 M K M _ N _
5 = ()= (F e K) = (K) =Try(5)7
N N
= (Trg(ﬁ) ‘T(R) T”Tg(f)) = (K" :pr) K').

Let u € K~', then (u+ P)% C & and so uK C K. Thus K~! C (K :p(g) K). On
the other hand, by [2, Lemma 1], (K () K) € K~'. Hence K~ = (K gy K)
and so by Lemma 2.6, KK~! = K(# M). Since M satisfies RTP, then K is a

radical submodule of M. Consequently v K’ = ,/% = ‘/TF = % =K'
(3) = (1) Set P =0, then M ~ 2. O

It is obvious that if I and J are ideals of R, then (I :gp J)M C (IM :pgy JM).

Lemma 2.11. Let R be an integral domain, M a faithful multiplication R-module
and Q a P-primary submodule of M. If N is a submodule of M containing QQ which
is not contained in P, then N=' C (Q TRy Q)-

Proof. Since @ is a P-primary submodule of M, then by [2, Lemma 4], (Q :g M) is
a (P :p M)-primary ideal of R. Therefore, by [11, Lemma 4.2.14], (N :gx M)~ C
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(@ :r M) :pr) (Q :r M)). Since, by [2, Lemma 1], N™' = (N :z M)}, so
N1 C((Q:r M) :rr) (Q:r M))M C (Q :1r) Q) O

Lemma 2.12. Let R be an integral domain, M a faithful multiplication R-module
and Q a P-primary submodule of M. Let N is a submodule of M such that Q C N C
QQ™ " and N € P, Then N™' = (QQ~") ™' = (QQ ™" :p(r) QQ™) = (Q :1(r) Q)-
Proof. Since @ C N C QQ~!, then, by [2, Proposition 15] and Lemma 2.11, we
have

(Q:rr) Q) C(QQ ™" :pry QR =(QR™T) TSN C(Q i Q)

Therefore N~ = (QQ~1)~! = (QQ ™! 'T(R) QRN =(Q '7(r) Q) -

Lemma 2.13.([7, Lemma 3.6]) Let R be an integral domain, M a faithful multiplica-
tion R-module and N, L submodules of M. Then (N :gp M)(L:g M) = (NL:p M).

Proposition 2.14. Let R be an integral domain and M a faithful multiplication
R-module. Then M is a discrete Valuation module if and only if each P-primary
submodule of M is a power of P.

Proof. Assume that M be a discrete Valuation module and @) a P-primary sub-
module of M. Then, by [2, Lemma 4], (Q :g M) is (P :g M)-primary ideal
of R. So, By [12, Theorem 1], R is a discrete valuation domain. Thus, by
[11, Lemma 5.3.1] and Lemma 2.13, there exists a positive integer n such that
(Q:rM)=(P:g M)* = (P"™:g M). Therefore Q = P™.

Conversely, suppose that ¢ be a P-primary submodule of M such that for some
positive integer n, @ = P™. So, by [2, Lemma 4], (Q :g M) is (P :g M)-primary
ideal of R. If M is not discrete Valuation module, then by [4, Theorem 1], R is
not a discrete Valuation domain. Thus, by [11, Lemma 5.3.1] and Lemma 2.13,
(Q :g M) # (P :g M) = (P™ :g M) for each positive integer n. Therefore
Q@ # P" for each positive integer n, which is a contradiction. O

Compare the next results with [12, Theorem 7.2, Theorem 17.1 and Theorem
17.3]

Lemma 2.15. Let R ba an integral domain and M a faithful multiplication R-
module. Let N and K be two submodules of M such that N 1is invertible and
K C N. Then there exists an ideal I of R such that K = IN.

Proof. Let N and K be two submodules of M such that N is invertible and K C N.
Then (N :g M) and (K :g M) are ideals of R and (N :g M) is an invertible ideal
of Rand (K :g M) C (N :g M). Thus, by [12, Theorem 7.2], there exists an ideal
I of R such that (K :g M) =I(N :g M). Therefore K = (K :g M)M = I(N :p
M)M = IN. O

Lemma 2.16. Let R be an integral domain, K a quotient field of R such that
R # K, M a Valuation faithful multiplication R-module and N a proper submodule
of M. Then P =(\,_, N™ is a prime submodule of M.
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Proof. 1t is obvious that P = ()2, N™ is a submodule of M. Since N # M,
then [N : M] is a proper ideal of R. Since M is Valuation module, then R is
Valuation domain and so by [12, Theorem 17.1] and Lemma 2.13, Py = ([N :

M]™ = (,_,[N™ : M] is a prime ideal of R. Therefore, by [9, Lemma 2.10],
P=N>"_[N": M]M =(\,2_, N" is a prime submodule of M. ]

Lemma 2.17. Let R be an integral domain, K a quotient field of R such that
R # K and M a Valuation faithful multiplication R-module. Then the product of
two P-primary submodules of M is a P-primary submodule of M.

Proof. Let N1 and Ny be two P-primary submodules of M. Clearly N1 N is a
submodule of M. Then, by [2, Lemma 1], (N; :g M) and (Na :g M) are (P :g M)-
primary ideals of R. Since M is Valuation module, then R is Valuation domain and
so by [12, Theorem 17.3] and Lemma 2.13, (Ny :p M)(Ny :g M) = (N1N2 :gp M)
is a (P :g M)-primary ideal of R. Therefore by [2, Lemma 4], NyNy = (N1 N3 :g
M)M is a P = (P :g M)M-primary submodule of M. O

Theorem 2.18. Let R be an integral domain, K a quotient field of R such that
R # K and M a Valuation faithful multiplication R-module. If P # P? is a prime
submodule of M, then each P-primary submodule of M is a power of P.

Proof. Since P is a prime submodule of M, then P is a primary submodule of M.
Also (P :g M) is a prime ideal of R, so (P :g M) is (P :g M)-primary ideal of R.
Then, by [2, Lemma 4], P is P-primary submodule of M. So, by Lemma 2.17, each
power of P is a P-primary submodule of M.

Now, let @ be a P-primary submodule of M. Then by [2, Lemma 4|, (Q :g M)
is a (P :g M)-primary ideal of R. If Q C P™ for each positive integer n, then
Q C o, P" and by Lemma 2.16, P, = ()., P™ is a prime submodule of M.
Since Py C P? # P, then Py G P. Since Q C (\,_, P" = Py, then (Q :r M) C
(Py :r M) and so \/(Q :r M) C \/(Py :g M). Thus (P :p M) C (P0:p M) and so
P=(P:g M)M C (Py :g M)M = Py, which is a contradiction. Therefore there
exists a positive integer n such that @ ¢ P™. Since M is a Valuation module, then
P" C Q. Suppose that m is the smallest positive integer such that P™ C Q. Thus
Q ;Cé P™~1L choose x € M such that z € P™~! and = ¢ Q. Since M is a Valuation
module, then @ C (z). On the other hand (z) is a principal submodule of M and so
is an invertible submodule of M. Therefore, by Lemma 2.15, there exists an ideal
I of R such that @ = I.(z). Thus Q C I. So for each a € I, ax € I.(z) = Q.
We know that Ra is an ideal of R and a € Ra C R. Since ar € Q and @ is a
P-primary submodule of M and = ¢ @, so a € /(Q :g M) = P. Thus I C P.
Then Q = I.(z) € PP™ ! = P™. Therefore Q = P™. O

3. When (NN L)~ ! is a Ring?

Theorem 3.1. Let R be an integral domain, M a faithful multiplication R-module
and N, L coprime radical submodules of M. Then the following are equivalent:
(1) Nt and L= are rings.
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(2) (NN L)~ and (N + L)~ are rings.

Moreover, (N + L)™' = (N + L :pgy N + L).

Proof. (1) = (2) Let N=! and L~! be rings. Then, by [2, Lemma 1], (N :g M)~!
and (L :g M)~! are rings. So (N :g M)"'+(L:g M)~tisaring. Thus N~1+ L1
is a ring. Since N + L = M, therefore by [2, Lemma 2], (NN L)~ = N=t+ L1 is
a ring. Also, by [2, Lemma 2] we have

(N+L)™" = ((N:r M)M +(L:g M)M)™" = (N :r M)+ (L :r M))M)™"
= (N:g M)+ (L:g M))™ = (N:g M)" 0 (L:g M)~
= N 'nL.

Since N~' N L~ is a ring, then (N + L)~! is a ring.

(2) = (1) Let (NNL)~! and (N +L)~! are rings. Then, by [2, Lemma 1], (NNL :p
M)~ and (N+ L :g M)~! are rings. Therefore, by [10, Theorem 3.4], (N :p M)~!
and (L :g M)~! are rings. So, by [2, Lemma 1], N~! and L~! are rings.

Now we show that (N 4+ L)™' = (N + L :p(gy N + L). By [2, Lemma 1], (N +
L :pry N+ L) € (N + L)~'. For the other inclusion, by [2, Lemma 2], we
have (N + L)™' = N='n L1 Let z € N~' N L™, then by [2, Proposition 11]
re€ Nt = (N :r(ry N) and so N C N. Similary = € L=t = (L ‘rry L), s0
xL C L and thus (N + L) = aN 4+ 2L C N + L and therefore x € (N + L :p(g)
N+1L). O

By induction we have the following corollary.

Corollary 3.2. Let R be an integral domain and M o faithful multiplication R-
module. Let Ni,..., N, be radical submodules of M such that N; + N; = M for
1<i,j<mnandi#j. If N7 , ..,N;* are rings, then (NyN...AN,)~! is a ring.

Proposition 3.3. Let R be an integral domain, M a faithful multiplication R-
module and N a nonzero submodule of M such that N~ is a ring. Then (v N)~*
is a ring and (VN)™' = (VN pry VN).

Proof. Suppose that z € (v/N)~'. For each a € VN = /(N :zr M)M there exists
a positive integer number n such that ™ € (N :g M)M = N. Since N = (N :p

MYM C /(N :g M)M = /N, then (VN)™' € N~! and so € N~'. Since N~*
is a ring, then z?" € N~1. So a"2?" € NN—! C M. Thus (az)?" = a"(a"z?*") €
NM C N and it follows that az € v/N. Then zv/N C N and so z € (VN “T(R)
V/N). On the other hand, by [2, Lemma 1], (VN :p(gr) VN) C (VN)~L. Therefore

(VN)™' = (VN :p(ry VN) is a ring.

Corollary 3.4. Let R be a integral domain, M a faithful multiplication R-module
and N, L coprime submodules of M. If N=' and L~ are rings, then (\/Nﬂ \E)’1
and (VN ++/L)~! are rings.

Proof. Let N~' and L~! be rings. Then, by Proposition 3.3, (v/N)~! and (v/L)™*
are rings. Since M = N + L C VN + VL C M, then VN + VL = M. Moreover
V'N and VL are radical submodules. Therefore, by Theorem 3.1, we are done. O
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Lemma 3.5. Let R be a ring and M an R-module. Then (N,)~t = N—1,

Proof. Since NN~! C M, then N C (M :p, N’l):(N’ )"t =N,. So( N, C
N~1. For the other inclusion, let x € N, = (M :g, N~!). Then zN~-! C M and
hence N,N-! C M. Thus N~! C (M :g, N,) = (N,)~!. Therefore (N,)™! =
N-L |

Theorem 3.6. Let R be an integral domain, M a faithful multiplication R-module
and N, K coprime submodules of M such that N"*NK~' = R. Then the following
are equivalent:

(1) Nt and L' are rings.

(2) (NN L)~ is a ring.

(3) (N, N L,)" ! is a ring.

Moreover, (NNL)™*=(N,NL,)"' = (NL)"' = (N,L,)!

Proof. (1) = (2) Let N~! and L~! be rings. Then N~! + L=! is a ring. Therefore,
by [2, Lemma 2], (NN L)™' = N=! + L~! is a ring.

(2) = (1) Let (NN L)~! be a ring. Then, by [2, Lemma 1], (NN L :g M)~! =
(N:g M)N (L :g M))~! is a ring. Hence, by [10, Theorem 3.7], (N :p M)~! and
(L :gr M)~! are rings. Therefore, by [2, Lemma 1], N~! and L~! are rings.

If N=! and L=! are rings, then, by Lemma 3.5, (V,)~! and (L, )~! are rings. Since
(1) and (2) are equivalent, it follows that (N, N L,)~! is a ring.

For the last equality, by [2, Lemma 1] we have N~' = (N :g M)"! and N, = (N :g
M),. Therefore (NN L)™' = (N,NL,)"t=(NL)~t=(N,L,) L. m

Proposition 3.7. Let R be an integral domain, M a faithful multiplication R-
module and N a radical submodule of M such that N = KN L for submodules K, L
of M. Then N™' is a ring if and only if there are radical submodules K1 O K and
L1 DL of M such that N = K1 N Ly and Kfl and Lfl are Tings.

Proof. Let N be a radical submodule of M such that N = K N L for submodules
K,Lof M. Then (N :g M) is a radical ideal of R and (N :g M) = (KNL:g M) =
(K :g M)N (L :g M). Now, if N7! is a ring, then by [2, Lemma 1], (N :g M)~}
is a ring and so by [10, Corollary 3.12], there are radical ideals A O (K :gp M) and
B D (L :g M) such that (N :g M) = ANB and A~! and B! are rings. Therefore,
there exist radical submodules AM 2 (K :g M)M = K and BM 2 (L:g M)M =
L such that N = AM N BM and A~! and B~ are rings, by [2, Lemma 1].
Conversely, suppose that there are radical submodules K1 O K and Ly O L of M
such that N = K; N Ly and K; ' and L' are rings. Then, by [2, Lemma 1] and
[6, Lemma 6], there are radical ideals (K; :g M) 2 (K :g M) and (Ly :g M) 2
(L :g M) of R such that (N :g M) = (Ky :g M)N (L :g M) and (K1 i M)~1
and (L; :g M)~! are rings. Therefore, by [10, Corollary 3.12], (N :g M)~ ! is a
ring and so by [2, Lemma 1], N~! is a ring. O
Definition 3.8. Let R be an ring, M an R-module and {Kas}aca a non-empty set
of prime submodules of M. We say that N =) K, is irredundant, if for each

B €A, ma;ﬁﬁK IQ—KB

acA
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Lemma 3.9. Let R be an integral domain, M a faithful multiplication R-module
and {Kq}aen a non-empty set of prime submodules of M. Then N = (o, Ko is
an irredundant submodule of M if and only if (N :g M) = ((,er Ko :r M) is an
irredundant ideal of R.

Proof. Let N = [),cx Ko be an irredundant submodule of M. Since K, is a prime
submodule of M, then (K, :g M) is a prime ideal of R. If there exists 8 € A
such that (,cx Ko R M)Q (Kp :r M), then N, Ko = (Narp Ko :r M)M C
(Kp:r M)M = Kpg, which is a contradiction. Therefore, (N :g M) = (N ep Ka iR
M) is an irredundant ideal of R. The converse is similar. O

acA

Theorem 3.10. Let R be an integral domain, M a faithful multiplication R-module
and {Kqo}aea a non-empty set of prime submodules of M. If N = (), Ko is a
nonzero and irredundant submodule of M, then the following are equivalent:

(1) N~ is a ring;

(2) For each a € A, K1 is a ring;

(3) For each non-empty subset T' of A, (N,er Ka) ™' is a ring.

Proof. Let {Ks}aeca be a non-empty set of prime submodules of M. Then
{(Ka :r M)}aca is a non-empty set of prime ideals of R. If N = [ o, Ko is
a nonzero and irredundant submodule of M, then by Lemma 3.9, (N :g M) =
(Naea Ko :r M) =Nyer (Ko :r M) is a nonzero irredundant ideal of R.

(1) = (2) Let N~! be a ring. Then, by [2, Lemma 1], (N :g M)~! is a ring.
Therefore, by [10, Proposition 3.13], (K, :g M)~! is a ring and so by [2, Lemma
1], K, is a ring.

(2) = (3) Let T' be a non-empty subset of A and L = (\,cp Ko. Then (L :p
M) = (Nper Ka :r M) = Naer (Ko :r M). Therefore, by [10, Proposition 3.13],
(L :r M)~ is a ring and so by [2, Lemma 1], L™ is a ring.

(3) = (2) It is obvious. O
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