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Abstract. This paper is devoted to study the divisorial submodules. We get some

equivalent conditions for a submodule to be a divisorial submodule. Also we get equivalent

conditions for (N ∩ L)−1 to be a ring, where N,L are submodules of a module M .

1. Introduction

Throughout this paper all rings are considered commutative rings with identiry
and all modules are considered unitary. Let R be a commutative ring with identity
and letM be an R-module. M is called a multiplication module if every submodule
N of M has the form IM for some ideal I of R. Let M be a multiplication R-
module and N a submodule of M . Then N = IM for some ideal I of R. Hence
I ⊆ (N :R M) and so N = IM ⊆ (N :R M)M ⊆ N . Therefore N = (N :R M)M
[8]. Let R be an integral domain, M a faithful multiplication R-module and N,L
submodules of M . Then (N :R M)(L :R M) = (NL :R M) [7, Lemma 3.6].
Therefore NL = (NL :R M)M . Thus we get Nn = (Nn :R M)M . An R-moduleM
is called a cancellation module if IM = JM for two ideals I and J of R implies I = J
[3]. By [17, Corollary 1 to Theorem 9], finitely generated faithful multiplication
modules are cancellation modules. It follows that ifM is a finitely generated faithful
multiplication R-module, then (IN :R M) = I(N :R M) for all ideals I of R and
all submodules N of M . If R is an integral domain and M a faithful multiplication
R-module, then M is a finitely generated R-module [9].

Let S be the set of all non-zero divisors of R and T (R) = RS the total quotient
ring of R. For a nonzero ideal I of R, let I−1 = {x ∈ T (R) : xI ⊆ R}. An ideal I
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of R is called invertible, if II−1 = R. Let M be an R-module and set

T = {t ∈ S : for all m ∈M, tm = 0 implies m = 0}.

Then T is a multiplicatively closed subset of R with T ⊆ S, and if M is torsion-
free then T = S. In particular, T = S if M is a faithful multiplication R-module
[9, Lemma 4.1]. Let N be a nonzero submodule of M . Then we write N−1 =
(M :RT

N) = {x ∈ RT : xN ⊆ M} and Nν = (N−1)−1. Then N−1 is an R-
submodule of RT , R ⊆ N−1 and NN−1 ⊆M . We say that N is invertible in M if
NN−1 =M . Clearly 0 ̸=M is invertible in M . If I is an invertible ideal of R then
IM is invertible in M and the converse is true if M is a finitely generated faithful
multiplication R-module [15]. Every invertible submodule N of a finitely generated
faithful multiplication R-module M is finitely generated faithful multiplication and
the converse is true if R is an integral domain [1]. An R-module M is called a
Dedekind module (resp., Prüfer module) if every nonzero submodule (resp., every
nonzero finitely generated submodule) of M is invertible [15]. An R-module M
is called a valuation module if for all m,n ∈ M , either Rm ⊆ Rn or Rn ⊆ Rm.
Equivalently, M is a valuation module if for all submodules N and K of M , either
N ⊆ K or K ⊆ N [4].

Following [3], a submodule N of M is called a divisorial submodule of M in
case N = NνM . If M is a finitely generated faithful multiplication R-module, then
Nν = (N :R M). Consequently, Mν = R. Let M be a finitely generated faithful
multiplication R-module, N a submodule of M and I an ideal of R. Then N is a
divisorial submodule of M if and only if (N :R M) is a divisorial ideal of R. Also
I is divisorial ideal of R if and only if IM is a divisorial submodule of M [2]. If N
is an invertible submodule of a faithful multiplication module M over an integral
domain R, then (N :R M) is invertible hence a divisorial ideal of R. So N is a divi-
sorial submodule of M [2]. If R is an integral domain, M a faithful multiplication
R-module and N a nonzero submodule of M , then Nν = (N :R M)ν [2, Lemma 1].
A submodule N of an R-module M is called an idempotent submodule of M if
N = (N :R M)N . It is shown that, if M is a multiplication R-module and N
a submodule of M such that (N :R M) is an idempotent ideal of R, then N is
an idempotent submodule of M . The converse is true if M is a finitely generated
faithful multiplication R-module [5, Theorem 3]. We say that a submodule N of
M is a radical submodule of M if N =

√
N , where

√
N =

√
(N :R M)M . If

a ∈
√
N =

√
(N :R M)M , then an ∈ (N :R M)M = N . Also, N = (N :R M)M ⊆√

(N :R M)M =
√
N . It is shown that if R is an integral domain, M a faithful

multiplication R-module and N a submodule of M , then N is a radical submodule
of M if and only if (N :R M) is a radical ideal of R [6, Lemma 6]. Let R be a
ring and M a finitely generated multiplication R-module. Then Q is a P -primary
submodule of M if and only if (Q :R M) is a (P :R M)-primary ideal of R [2,
Lemma 4].
Let R be a an integral domain, M a faithful multiplication R-module and N a
submodule of M . Then T (N) =

∪∞
n=1(M :K (N ;M)nM). Furthermore, if M is
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finitely generated, then T (N) =
∪∞

n=1(R :K (N :R M)n) = T ((N :R M)), [2].
An integral domain R is said to satisfy the trace property (TP ) provided that
Tr(M) =

∑
f∈Hom(M,R) f(M) either equals R or is a prime ideal of R for each

R-module M [11]. An R-module M satisfies trace property (TP ) if TrM (N) = M
or TrM (N) is a prime submodule for each nonzero submodule N of M , where
TrM (N) =

∑
f∈Hom(N,M) f(N), [2]. It is proved that if R is a ring,M an R-module

and N a submodule of M , then TrM (N)−1 = (TrM (N) :RT
TrM (N)). Moreover if

M is a finitely generated faithful multiplication R-module, then TrM (N) = NN−1,
[2, Theorem 15].
In section 2, we generalize some properties of dividorial ideals of an integral domain
to modules. In Lemma 2.1, we get equivalent conditions for a submodule to be a
divisorial submodule. Let R be an integral domain, M a Prüfer faithful multipli-
cation R-module and P a maximal submodule of M . Then each power of P is a
divisorial submodule of M if and only if P 2 is a divisorial submodule of M (Lemma
2.4). In Theorem 2.5, we imply other equivalent conditions for each power of P to
be divisorial submodule. An R-module M satisfies radical trace property (RTP )

provided TrM (N) = M or TrM (N) =
√
NN−1 for each submodule N of M . In

Theorem 2.8, we show that if R is an integral domain and M a faithful multiplica-
tion R-module, then M satisfies RTP if and only if R satisfies RTP . In Theorem
2.9, we give equivalent conditions for M to satisfies RTP . In proposition 2.14, we
show that, if R is an integral domain and M a faithful multiplication R-module,
then M is a discrete Valuation module if and only if each P -primary submodule of
M is a power of P . Let R ba an integral domain and M a faithful multiplication
R-module. Let N and K be two submodules of M such that N is invertible and
K ⊆ N . Then there exists an ideal I of R such that K = IN (Lemma 2.15). Let R
be an integral domain, K a quotient field of R such that R ̸= K and M a Valuation
faithful multiplication R-module. Then the product of two P -primary submodules
of M is a P -primary submodule of M (Lemma 2.17). In Theorem 2.18, we prove
that, if R is an integral domain, K a quotient field of R such that R ̸= K and M a
Valuation faithful multiplication R-module and if P ̸= P 2 is a prime submodule of
M , then each P -primary submodule of M is a power of P .
In section 3, we give equivalent conditions for N−1 and L−1 to be rings, where N,L
are submodules of R-module M . let R be a ring and N,L be two submodules of an
R-module M . Then N and L are coprime if N + L = M [2]. Let R be an integral
domain, M a faithful multiplication R-module and N,L coprime submodules of M .
We get equivalent conditions for (N ∩L)−1 to be a ring (Theorem 3.1 and Theorem
3.6). In Proposition 3.7, we show that if R is an integral domain, M a faithful
multiplication R-module and N a radical submodule of M such that N = K ∩ L
for submodules K,L of M , then N−1 is a ring if and only if there are radical sub-
modules K1 ⊇ K and L1 ⊇ L of M such that N = K1 ∩ L1 and K−1

1 and L−1
1 are

rings.
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2. Divisorial Submodules

Compare the next results with [11, Lemma 4.1.8, Lemma 4.1.16, Proposition
4.1.17, Corollary 4.1.18, Theorem 4.1.19, Theorem 4.2.13, Lemma 4.2.14, Lemma
4.2.15 and Lemma 5.3.1]. We start with the following lemma.

Lemma 2.1. Let R be an integral domain and M a Prüfer faithful multiplication
R-module. If P is a maximal submodule of M , then the following are equivalent:
(1) P is a divisorial submodule of M ;
(2) Pn is a divisorial submodule of M for each positive integer n;
(3) P is a finitely generated submodule of M(i.e. P is an invertible submodule of
M).

Proof. (1) ⇒ (3) If P is not an invertible submodule of M , then P−1 = R, [2,
Proposition 13]. Since P is a divisorial submodule of M , then

P = (P−1)−1 = R−1 = R

which is a contradiction, because R is invertible. Therefore P is an invertible
submodule of M .
(3) ⇒ (2) If P is a finitely generated submodule ofM , then so is Pn for each positive
integer n. So Pn is an invertible submodule of M . Thus P−n is not a subring of
T (R), [2, Proposition 11]. Therefore Pn is a divisorial submodule of M for each
positive integer n, [2, Proposition 14].
(2) ⇒ (1) It is clear. 2

Lemma 2.2. Let R be an integral domain, M a faithful multiplication R-module
and N a submodule of M . Then (M :RT T (N)) =

∩∞
n=1(N

n)ν .

Proof. By [2, Lemma 1], we have (N :R M)ν = Nν . Therefore

(M :RT
T (N)) = (M :RT

∞∪
n=1

(M :RT
(N :R M)nM))

= (M :RT

∞∪
n=1

(N :R M)−nM)

=

∞∩
n=1

(M :RT (N :R M)−nM)

=

∞∩
n=1

(R :T (R) (N :R M)−n) =

∞∩
n=1

((N :R M)−n)−1

=
∞∩

n=1

(N :R M)nν =
∞∩

n=1

Nn
ν .

2

Proposition 2.3. Let R be an integral domain, M a faithful multiplication R-
module and P a maximal submodule of M . Then Pn is divisorial for each positive
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integer n if and only if (M :RT
T (P )) = P0, where P0 =

∩∞
n=1 P

n.

Proof. Let Pn be a divisorial submodule of M for each positive integer n. By
Lemma 2.2,

∩∞
n=1 P

n =
∩∞

n=1(P
n)ν = (M :RT

T (P )).
For converse, assume that P is a maximal submodule of M . If P−1 = R, then by
[2, Lemma 1], (P :R M)−1 = R. Hence by induction we have

P−n = (P :R M)−n = (R :T (R) (P :R M)n)

= (R :T (R) (P :R M)n−1 :R (P :R M))

= ((P :R M)−(n−1) :R (P :R M))

= (R :T (R) (P :R M)) = (P :R M)−1 = P−1 = R.

Thus

T (P ) =
∞∪

n=1

(M :RT
(P :R M)nM) =

∞∪
n=1

(R :T (R) (P :R M)n)

=

∞∪
n=1

(P :R M)−n =

∞∪
n=1

((P :R M)−1)n =

∞∪
n=1

(P−1)n = R.

Then (M :RT T (P )) = (M :RT R) = M , which is a contradiction. Hence P is a
invertible submodule of M , [2, Proposition 13]. So by Lemma 2.1, P is a finitely
generated submodule of M . Then, by Lemma 2.1, Pn is a divisorial submodule of
M for each positive integer n. 2

Lemma 2.4. Let R be an integral domain, M a Prüfer faithful multiplication R-
module and P a maximal submodule of M . Then each power of P is a divisorial
submodule of M if and only if P 2 is a divisorial submodule of M .

Proof. Assume that P 2 is a divisorial submodule of M . If P is not invertible, then
P−1 = R, [2, Proposition 13]. Then, by [2, Lemma 1], (P :R M)−1 = R. So, by [2,
Lemma 1], we have

P−2 = (P :R M)−2 = (R :T (R) (P :R M)2)

= (R :T (R) (P :R M) :R (P :R M))

= ((P :R M)−1 :R (P :R M))

= (R :T (R) (P :R M)) = (P :R M)−1 = R.

Thus P 2 is not a divisorial submodule of M , which is a contradiction. Therefore
P is an invertible submodule of M and so P is a finitely generated submodule of
M . Thus by Lemma 2.1, P is a divisorial submodule of M and so Pn is a divisorial
submodule of M for each n ≥ 1. The converse is clear. 2

It is shown that, if M is a finitely generated multiplication R-module and N a
submodule ofM , then N is an idempotent submodule ofM if and only if (N :R M)
is an idempotent ideal of R.
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Theorem 2.5. Let R be an integral domain, M a Prüfer faithful multiplication
R-module and P a maximal submodule of M . The following are equivalent:
(1) Pn is a divisorial submodule of M for each n ≥ 1;
(2) (M : T (P )) = P0, where P0 =

∩∞
n=1 P

n;
(3) P 2 is a divisorial submodule of M ;
(4) Either P−1 ⊂ T (P ) or P is a divisorial idempotent submodule of M .

Proof. (1) ⇔ (2) Lemma 2.3.
(1) ⇔ (3) Lemma 2.4.
(1) ⇒ (4) Let P−1 = T (P ). Then, by [2, Lemma 1], (P :R M)−1 = P−1 = T (P ) =
T ((P :R N)). Thus, by [11, Theorem 4.1.19], (P :R M) is an idempotent ideal of
R. Hence P is an idempotent submodule of M .
(4) ⇒ (1) Let P−1 ⊂ T (P ). If P−1 = R, then by [2, Lemma 1], (P :R M)−1 = R.
Hence

T (P ) =
∞∪

n=1

(M :RT
(P :R M)nM) =

∞∪
n=1

(R :T (R) (P :R M)n)

=

∞∪
n=1

(P :R M)−n = R

which is a contradiction, because R ⊆ P−1 ⊂ T (P ). Therefore P is an invertible
submodule ofM , [2, Proposition 13]. Then, by Lemma 2.1, P is a finitely generated
submodule of M and so P is a divisorial submodule of M . Therefore, by Lemma
2.1, Pn is divisorial submodule of M for each n ≥ 1. 2

Lemma 2.6. Let R be an integral domain, M a faithful multiplication R-module
and N a submodule of M . Then N−1 = (N :T (R) N) if and only if NN−1 = N .

Proof. Assume that N−1 = (N :T (R) N). Then (N :R M)−1 = ((N :R M)M :T (R)

(N :R M)M) and so (N :R M)−1(N :R M)M = ((N :R M)M :T (R) (N :R
M)M)(N :R M)M = (N :T (R) N)N . Therefore N−1N = N . Conversely, if
NN−1 = N , then by [2, Theorem 15], TrM (N) = NN−1 = N . Therefore, by [2,
Theorem 15], N−1 = (N :T (R) N). 2

Recall that a ring R satisfies the radical trace property if Tr(I) =
√
II−1 or

Tr(I) = R. It is shown that R satisfies the radical trace property if and only if
RS satisfies the radical trace property for each multiplicatively closed subset S of
R ([11, Theorem 4.2.13]).

Definition 2.7. We say that an R-moduleM satisfies radical trace property (RTP )

provided that TrM (N) =M or TrM (N) =
√
NN−1 for each submodule N of M .

Theorem 2.8. Let R be an integral domain and M a faithful multiplication R-
module. Then M satisfy RTP if and only if R satisfies RTP .

Proof. Let M satisfy RTP and I an ideal of R. Then IM is a submodule of
M . Therefore (IM)(IM)−1 = M or (IM)(IM)−1 =

√
(IM)(IM)−1. Hence, by
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[6, Lemma 6], II−1 = R or II−1 =
√
II−1 and so R satisfies RTP . Conversely,

assume that R satisfies RTP and let N be a submodule of M . Then (N :R M)
is an ideal of R. Thus (N :R M)(N :R M)−1 = R or (N :R M)(N :R M)−1 =√
(N :R M)(N :R M)−1. So, by [6, Lemma 6], (N :R M)(N :R M)−1M = M or

(N :R M)(N :R M)−1M =
√
(N :R M)(N :R M)−1M . Thus, by [2, Lemma 1],

NN−1 =M or NN−1 =
√
NN−1. Therefore M satisfies RTP . 2

Corollary 2.9. Let R be an integral domain, M a faithful multiplication R-module
and S a multiplicatively closed subset of R. Then MS satisfies RTP if and only if
RS satisfies RTP .

Theorem 2.10. Let M be a faithful multiplication R-module. Then the following
are equivalent:
(1) M satisfies RTP ;
(2) For each multiplicatively closed subset S of R, MS satisfies RTP ;
(3) For each prime submodule P of M , M

P satisfies RTP .

Proof. (1) ⇒ (2) Assume that M satisfies RTP . Then, by Theorem 2.8, R satisfies
RTP . So, by [11, Theorem 4.2.13], RS satisfies RTP . Therefore, by Corollary 2.9,
MS satisfies RTP .
(2) ⇒ (1) Set S = {1}, then M =MS .
(1) ⇒ (3) If P is a maximal submodule ofM , then M

P is a simple module. Therefore
assume that P is a nonmaximal prime submodule of M . Let N be a submodule
of M containing P and K ′ := (NP )(NP )−1 ̸= M

P . We show that K ′ is a radical

submodule of M
P . Write K ′ = K

P for some submodule K of M , where K contains
P . By [2, Proposition 15], we have

K−1

P
= (

M

P
:RT

K

P
) = (

M

P
:RT

K ′) = (K ′)−1 = TrM
P
(
N

P
)−1

= (TrM
P
(
N

P
) :T (R) TrM

P
(
N

P
)) = (K ′ :T (R) K

′).

Let u ∈ K−1, then (u+ P )KP ⊆ K
P and so uK ⊆ K. Thus K−1 ⊆ (K :T (R) K). On

the other hand, by [2, Lemma 1], (K :T (R) K) ⊆ K−1. Hence K−1 = (K :T (R) K)
and so by Lemma 2.6, KK−1 = K (̸= M). Since M satisfies RTP , then K is a

radical submodule of M . Consequently
√
K ′ =

√
K
P =

√
K
P = K

P = K ′.

(3) ⇒ (1) Set P = 0, then M ≃ M
P . 2

It is obvious that if I and J are ideals of R, then (I :R J)M ⊆ (IM :T (R) JM).

Lemma 2.11. Let R be an integral domain, M a faithful multiplication R-module
and Q a P -primary submodule of M . If N is a submodule of M containing Q which
is not contained in P , then N−1 ⊆ (Q :T (R) Q).

Proof. Since Q is a P -primary submodule of M , then by [2, Lemma 4], (Q :R M) is
a (P :R M)-primary ideal of R. Therefore, by [11, Lemma 4.2.14], (N :R M)−1 ⊆
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((Q :R M) :T (R) (Q :R M)). Since, by [2, Lemma 1], N−1 = (N :R M)−1, so
N−1 ⊆ ((Q :R M) :T (R) (Q :R M))M ⊆ (Q :T (R) Q). 2

Lemma 2.12. Let R be an integral domain, M a faithful multiplication R-module
and Q a P -primary submodule ofM . Let N is a submodule ofM such that Q ⊆ N ⊆
QQ−1 and N * P , Then N−1 = (QQ−1)−1 = (QQ−1 :T (R) QQ

−1) = (Q :T (R) Q).
Proof. Since Q ⊆ N ⊆ QQ−1, then, by [2, Proposition 15] and Lemma 2.11, we
have

(Q :T (R) Q) ⊆ (QQ−1 :T (R) QQ
−1) = (QQ−1)−1 ⊆ N−1 ⊆ (Q :T (R) Q)

Therefore N−1 = (QQ−1)−1 = (QQ−1 :T (R) QQ
−1) = (Q :T (R) Q). 2

Lemma 2.13.([7, Lemma 3.6]) Let R be an integral domain,M a faithful multiplica-
tion R-module and N,L submodules of M . Then (N :R M)(L :R M) = (NL :R M).

Proposition 2.14. Let R be an integral domain and M a faithful multiplication
R-module. Then M is a discrete Valuation module if and only if each P -primary
submodule of M is a power of P .

Proof. Assume that M be a discrete Valuation module and Q a P -primary sub-
module of M . Then, by [2, Lemma 4], (Q :R M) is (P :R M)-primary ideal
of R. So, By [12, Theorem 1], R is a discrete valuation domain. Thus, by
[11, Lemma 5.3.1] and Lemma 2.13, there exists a positive integer n such that
(Q :R M) = (P :R M)n = (Pn :R M). Therefore Q = Pn.
Conversely, suppose that Q be a P -primary submodule of M such that for some
positive integer n, Q = Pn. So, by [2, Lemma 4], (Q :R M) is (P :R M)-primary
ideal of R. If M is not discrete Valuation module, then by [4, Theorem 1], R is
not a discrete Valuation domain. Thus, by [11, Lemma 5.3.1] and Lemma 2.13,
(Q :R M) ̸= (P :R M)n = (Pn :R M) for each positive integer n. Therefore
Q ̸= Pn for each positive integer n, which is a contradiction. 2

Compare the next results with [12, Theorem 7.2,Theorem 17.1 and Theorem
17.3]

Lemma 2.15. Let R ba an integral domain and M a faithful multiplication R-
module. Let N and K be two submodules of M such that N is invertible and
K ⊆ N . Then there exists an ideal I of R such that K = IN .

Proof. Let N and K be two submodules ofM such that N is invertible and K ⊆ N .
Then (N :R M) and (K :R M) are ideals of R and (N :R M) is an invertible ideal
of R and (K :R M) ⊆ (N :R M). Thus, by [12, Theorem 7.2], there exists an ideal
I of R such that (K :R M) = I(N :R M). Therefore K = (K :R M)M = I(N :R
M)M = IN . 2

Lemma 2.16. Let R be an integral domain, K a quotient field of R such that
R ̸= K, M a Valuation faithful multiplication R-module and N a proper submodule
of M . Then P =

∩∞
n=1N

n is a prime submodule of M .
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Proof. It is obvious that P =
∩∞

n=1N
n is a submodule of M . Since N ̸= M ,

then [N : M ] is a proper ideal of R. Since M is Valuation module, then R is
Valuation domain and so by [12, Theorem 17.1] and Lemma 2.13, P0 =

∩∞
n=1[N :

M ]n =
∩∞

n=1[N
n : M ] is a prime ideal of R. Therefore, by [9, Lemma 2.10],

P =
∩∞

n=1[N
n :M ]M =

∩∞
n=1N

n is a prime submodule of M . 2

Lemma 2.17. Let R be an integral domain, K a quotient field of R such that
R ̸= K and M a Valuation faithful multiplication R-module. Then the product of
two P -primary submodules of M is a P -primary submodule of M .

Proof. Let N1 and N2 be two P -primary submodules of M . Clearly N1N2 is a
submodule of M . Then, by [2, Lemma 1], (N1 :R M) and (N2 :R M) are (P :R M)-
primary ideals of R. Since M is Valuation module, then R is Valuation domain and
so by [12, Theorem 17.3] and Lemma 2.13, (N1 :R M)(N2 :R M) = (N1N2 :R M)
is a (P :R M)-primary ideal of R. Therefore by [2, Lemma 4], N1N2 = (N1N2 :R
M)M is a P = (P :R M)M -primary submodule of M . 2

Theorem 2.18. Let R be an integral domain, K a quotient field of R such that
R ̸= K and M a Valuation faithful multiplication R-module. If P ̸= P 2 is a prime
submodule of M , then each P -primary submodule of M is a power of P .

Proof. Since P is a prime submodule of M , then P is a primary submodule of M .
Also (P :R M) is a prime ideal of R, so (P :R M) is (P :R M)-primary ideal of R.
Then, by [2, Lemma 4], P is P -primary submodule of M . So, by Lemma 2.17, each
power of P is a P -primary submodule of M .
Now, let Q be a P -primary submodule of M . Then by [2, Lemma 4], (Q :R M)
is a (P :R M)-primary ideal of R. If Q ⊆ Pn for each positive integer n, then
Q ⊆

∩∞
n=1 P

n and by Lemma 2.16, P0 =
∩∞

n=1 P
n is a prime submodule of M .

Since P0 ⊆ P 2 ̸= P , then P0 $ P . Since Q ⊆
∩∞

n=1 P
n = P0, then (Q :R M) ⊆

(P0 :R M) and so
√

(Q :R M) ⊆
√

(P0 :R M). Thus (P :R M) ⊆ (P0 :R M) and so
P = (P :R M)M ⊆ (P0 :R M)M = P0, which is a contradiction. Therefore there
exists a positive integer n such that Q * Pn. Since M is a Valuation module, then
Pn ⊆ Q. Suppose that m is the smallest positive integer such that Pm ⊆ Q. Thus
Q $ Pm−1. choose x ∈M such that x ∈ Pm−1 and x /∈ Q. Since M is a Valuation
module, then Q ⊆ (x). On the other hand (x) is a principal submodule ofM and so
is an invertible submodule of M . Therefore, by Lemma 2.15, there exists an ideal
I of R such that Q = I.(x). Thus Q ⊆ I. So for each a ∈ I, ax ∈ I.(x) = Q.
We know that Ra is an ideal of R and a ∈ Ra ⊆ R. Since ax ∈ Q and Q is a
P -primary submodule of M and x /∈ Q, so a ∈

√
(Q :R M) = P . Thus I ⊆ P .

Then Q = I.(x) ⊆ PPm−1 = Pm. Therefore Q = Pm. 2

3. When (N ∩ L)−1 is a Ring?

Theorem 3.1. Let R be an integral domain, M a faithful multiplication R-module
and N,L coprime radical submodules of M . Then the following are equivalent:
(1) N−1 and L−1 are rings.
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(2) (N ∩ L)−1 and (N + L)−1 are rings.
Moreover, (N + L)−1 = (N + L :T (R) N + L).

Proof. (1) ⇒ (2) Let N−1 and L−1 be rings. Then, by [2, Lemma 1], (N :R M)−1

and (L :R M)−1 are rings. So (N :R M)−1+(L :R M)−1 is a ring. Thus N−1+L−1

is a ring. Since N +L =M , therefore by [2, Lemma 2], (N ∩L)−1 = N−1 +L−1 is
a ring. Also, by [2, Lemma 2] we have

(N + L)−1 = ((N :R M)M + (L :R M)M)−1 = (((N :R M) + (L :R M))M)−1

= ((N :R M) + (L :R M))−1 = (N :R M)−1 ∩ (L :R M)−1

= N−1 ∩ L−1.

Since N−1 ∩ L−1 is a ring, then (N + L)−1 is a ring.
(2) ⇒ (1) Let (N ∩L)−1 and (N+L)−1 are rings. Then, by [2, Lemma 1], (N ∩L :R
M)−1 and (N +L :R M)−1 are rings. Therefore, by [10, Theorem 3.4], (N :R M)−1

and (L :R M)−1 are rings. So, by [2, Lemma 1], N−1 and L−1 are rings.
Now we show that (N + L)−1 = (N + L :T (R) N + L). By [2, Lemma 1], (N +
L :T (R) N + L) ⊆ (N + L)−1. For the other inclusion, by [2, Lemma 2], we
have (N + L)−1 = N−1 ∩ L−1. Let x ∈ N−1 ∩ L−1, then by [2, Proposition 11]
x ∈ N−1 = (N :T (R) N) and so xN ⊆ N . Similary x ∈ L−1 = (L :T (R) L), so
xL ⊆ L and thus x(N + L) = xN + xL ⊆ N + L and therefore x ∈ (N + L :T (R)

N +L). 2

By induction we have the following corollary.

Corollary 3.2. Let R be an integral domain and M a faithful multiplication R-
module. Let N1, ..., Nn be radical submodules of M such that Ni + Nj = M for
1 ≤ i, j ≤ n and i ̸= j. If N−1

1 , ..., N−1
n are rings, then (N1 ∩ ...∩Nn)

−1 is a ring.

Proposition 3.3. Let R be an integral domain, M a faithful multiplication R-
module and N a nonzero submodule of M such that N−1 is a ring. Then (

√
N)−1

is a ring and (
√
N)−1 = (

√
N :T (R)

√
N).

Proof. Suppose that x ∈ (
√
N)−1. For each a ∈

√
N =

√
(N :R M)M there exists

a positive integer number n such that an ∈ (N :R M)M = N . Since N = (N :R
M)M ⊆

√
(N :R M)M =

√
N , then (

√
N)−1 ⊆ N−1 and so x ∈ N−1. Since N−1

is a ring, then x2n ∈ N−1. So anx2n ∈ NN−1 ⊆ M . Thus (ax)2n = an(anx2n) ∈
NM ⊆ N and it follows that ax ∈

√
N . Then x

√
N ⊆

√
N and so x ∈ (

√
N :T (R)√

N). On the other hand, by [2, Lemma 1], (
√
N :T (R)

√
N) ⊆ (

√
N)−1. Therefore

(
√
N)−1 = (

√
N :T (R)

√
N) is a ring.

Corollary 3.4. Let R be a integral domain, M a faithful multiplication R-module
and N,L coprime submodules of M . If N−1 and L−1 are rings, then (

√
N ∩

√
L)−1

and (
√
N +

√
L)−1 are rings.

Proof. Let N−1 and L−1 be rings. Then, by Proposition 3.3, (
√
N)−1 and (

√
L)−1

are rings. Since M = N + L ⊆
√
N +

√
L ⊆ M , then

√
N +

√
L = M . Moreover√

N and
√
L are radical submodules. Therefore, by Theorem 3.1, we are done. 2
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Lemma 3.5. Let R be a ring and M an R-module. Then (Nν)
−1 = N−1.

Proof. Since NN−1 ⊆M , then N ⊆ (M :RT N−1) = (N−1)−1 = Nν . So (Nν)
−1 ⊆

N−1. For the other inclusion, let x ∈ Nν = (M :RT
N−1). Then xN−1 ⊆ M and

hence NνN
−1 ⊆ M . Thus N−1 ⊆ (M :RT Nν) = (Nν)

−1. Therefore (Nν)
−1 =

N−1. 2

Theorem 3.6. Let R be an integral domain, M a faithful multiplication R-module
and N,K coprime submodules of M such that N−1 ∩K−1 = R. Then the following
are equivalent:
(1) N−1 and L−1 are rings.
(2) (N ∩ L)−1 is a ring.
(3) (Nν ∩ Lν)

−1 is a ring.
Moreover, (N ∩ L)−1 = (Nν ∩ Lν)

−1 = (NL)−1 = (NνLν)
−1.

Proof. (1) ⇒ (2) Let N−1 and L−1 be rings. Then N−1 +L−1 is a ring. Therefore,
by [2, Lemma 2], (N ∩ L)−1 = N−1 + L−1 is a ring.
(2) ⇒ (1) Let (N ∩ L)−1 be a ring. Then, by [2, Lemma 1], (N ∩ L :R M)−1 =
((N :R M) ∩ (L :R M))−1 is a ring. Hence, by [10, Theorem 3.7], (N :R M)−1 and
(L :R M)−1 are rings. Therefore, by [2, Lemma 1], N−1 and L−1 are rings.
If N−1 and L−1 are rings, then, by Lemma 3.5, (Nν)

−1 and (Lν)
−1 are rings. Since

(1) and (2) are equivalent, it follows that (Nν ∩ Lν)
−1 is a ring.

For the last equality, by [2, Lemma 1] we have N−1 = (N :R M)−1 and Nν = (N :R
M)ν . Therefore (N ∩ L)−1 = (Nν ∩ Lν)

−1 = (NL)−1 = (NνLν)
−1. 2

Proposition 3.7. Let R be an integral domain, M a faithful multiplication R-
module and N a radical submodule of M such that N = K ∩L for submodules K,L
of M . Then N−1 is a ring if and only if there are radical submodules K1 ⊇ K and
L1 ⊇ L of M such that N = K1 ∩ L1 and K−1

1 and L−1
1 are rings.

Proof. Let N be a radical submodule of M such that N = K ∩ L for submodules
K,L ofM . Then (N :R M) is a radical ideal of R and (N :R M) = (K∩L :R M) =
(K :R M) ∩ (L :R M). Now, if N−1 is a ring, then by [2, Lemma 1], (N :R M)−1

is a ring and so by [10, Corollary 3.12], there are radical ideals A ⊇ (K :R M) and
B ⊇ (L :R M) such that (N :R M) = A∩B and A−1 and B−1 are rings. Therefore,
there exist radical submodules AM ⊇ (K :R M)M = K and BM ⊇ (L :R M)M =
L such that N = AM ∩BM and A−1 and B−1 are rings, by [2, Lemma 1].
Conversely, suppose that there are radical submodules K1 ⊇ K and L1 ⊇ L of M
such that N = K1 ∩ L1 and K−1

1 and L−1
1 are rings. Then, by [2, Lemma 1] and

[6, Lemma 6], there are radical ideals (K1 :R M) ⊇ (K :R M) and (L1 :R M) ⊇
(L :R M) of R such that (N :R M) = (K1 :R M) ∩ (L1 :R M) and (K1 :R M)−1

and (L1 :R M)−1 are rings. Therefore, by [10, Corollary 3.12], (N :R M)−1 is a
ring and so by [2, Lemma 1], N−1 is a ring. 2

Definition 3.8. Let R be an ring, M an R-module and {Kα}α∈Λ a non-empty set
of prime submodules of M . We say that N =

∩
α∈ΛKα is irredundant, if for each

β ∈ Λ,
∩

α ̸=β Kα * Kβ .
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Lemma 3.9. Let R be an integral domain, M a faithful multiplication R-module
and {Kα}α∈Λ a non-empty set of prime submodules of M . Then N =

∩
α∈ΛKα is

an irredundant submodule of M if and only if (N :R M) = (
∩

α∈ΛKα :R M) is an
irredundant ideal of R.

Proof. Let N =
∩

α∈ΛKα be an irredundant submodule of M . Since Kα is a prime
submodule of M , then (Kα :R M) is a prime ideal of R. If there exists β ∈ Λ
such that (

∩
α∈ΛKα :R M) ⊆ (Kβ :R M), then

∩
α ̸=β Kα = (

∩
α ̸=β Kα :R M)M ⊆

(Kβ :R M)M = Kβ , which is a contradiction. Therefore, (N :R M) = (
∩

α∈ΛKα :R
M) is an irredundant ideal of R. The converse is similar. 2

Theorem 3.10. Let R be an integral domain, M a faithful multiplication R-module
and {Kα}α∈Λ a non-empty set of prime submodules of M . If N =

∩
α∈ΛKα is a

nonzero and irredundant submodule of M , then the following are equivalent:
(1) N−1 is a ring;
(2) For each α ∈ Λ, K−1

α is a ring;
(3) For each non-empty subset Γ of Λ, (

∩
α∈ΓKα)

−1 is a ring.

Proof. Let {Kα}α∈Λ be a non-empty set of prime submodules of M . Then
{(Kα :R M)}α∈Λ is a non-empty set of prime ideals of R. If N =

∩
α∈ΛKα is

a nonzero and irredundant submodule of M , then by Lemma 3.9, (N :R M) =
(
∩

α∈ΛKα :R M) =
∩

α∈Λ(Kα :R M) is a nonzero irredundant ideal of R.

(1) ⇒ (2) Let N−1 be a ring. Then, by [2, Lemma 1], (N :R M)−1 is a ring.
Therefore, by [10, Proposition 3.13], (Kα :R M)−1 is a ring and so by [2, Lemma
1], K−1

α is a ring.
(2) ⇒ (3) Let Γ be a non-empty subset of Λ and L =

∩
α∈ΓKα. Then (L :R

M) = (
∩

α∈ΓKα :R M) =
∩

α∈Γ(Kα :R M). Therefore, by [10, Proposition 3.13],

(L :R M)−1 is a ring and so by [2, Lemma 1], L−1 is a ring.
(3) ⇒ (2) It is obvious. 2
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