Nearly k-th Partial Ternary Quadratic $*$-Derivations

Berna Arslan* and Hülya Inceboz
Department of Mathematics, Adnan Menderes University, Aydın, Turkey
e-mail: byorganci@adu.edu.tr and hinceboz@adu.edu.tr
Ali GüVen
Department of Mathematics, Balikesir University, Balikesir, Turkey
e-mail: guvennali@gmail.com
Abstract. The Hyers-Ulam-Rassias stability of the k-th partial ternary quadratic derivations is investigated in non-Archimedean Banach ternary algebras and non-Archimedean C^{*}-ternary algebras by using the fixed point theorem.

1. Introduction and Preliminaries

The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam [24], concerning group homomorphisms:

Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \circ, d\right)$ be a metric group with the metric $d(.,$.$) .$ Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a function $f: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(f(x * y), f(x) \circ f(y))<\delta
$$

for all $x, y \in G_{1}$, then there exists a homomorphism $h: G_{1} \rightarrow G_{2}$ with $d(f(x), h(x))<\epsilon$ for all $x \in G_{1}$?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it.

In 1941, Hyers [8] gave a first affirmative answer to the question of Ulam for the case of approximate additive mappings under the assumption that G_{1} and G_{2}

[^0]are Banach spaces. In 1978, Th. M. Rassias [21] extended the theorem of Hyers by considering the stability problem with unbounded Cauchy difference inequality
$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \quad(\epsilon \geq 0, p \in[0,1))
$$

Namely, he has proved the following:
Theorem 1.1.([21]) Let E_{1}, E_{2} be Banach spaces. If $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$, where ϵ and p are constants with $\epsilon \geq 0$ and $0 \leq p<1$, then there exists a unique additive mapping $A: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-A(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$. If, moreover, the function $t \mapsto f(t x)$ from \mathbb{R} into E_{2} is continuous for each fixed $x \in E_{1}$, then the mapping A is \mathbb{R}-linear.

This result provided a remarkable generalization of the Hyers' theorem. So this kind of stability that was introduced by Th. M. Rassias [21] is called the Hyers-Ulam-Rassias stability of functional equations. In 1994, Găvruta [7] obtained a generalization of Rassias' theorem by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$.

The Hyers-Ulam-Rassias stability problems of various functional equations and mappings with more general domains and ranges have been investigated by several mathematicians (see [13]-[17]). We also refer the readers to the books [4],[9] and [22].

The stability result concerning derivations between operator algebras was first obtained by \check{S} emrl in [23]. Park and et al. proved the stability of homomorphisms and derivations in Banach algebras, Banach ternary algebras, C^{*}-algebras, Lie C^{*} algebras and C^{*}-ternary algebras ([3],[18],[19],[20]).

We recall some basic facts concerning Banach ternary algebras and some preliminary results.

Let A be a linear space over a complex field equipped with a mapping, the so-called ternary product, []: $A \times A \times A \rightarrow A$ with $(x, y, z) \mapsto[x y z]$ that is linear in variables x, y, z and satisfies the associative identity, i.e. $[[x y z] u v]=[x[y z u] v]=$ [xy[zuv]] for all $x, y, z, u, v \in A$. The pair $(A,[])$ is called a ternary algebra. The ternary algebra $(A,[])$ is called unital if it has an identity element, i.e. an element $e \in A$ such that $[x e e]=[e e x]=x$ for every $x \in A$. A $*$-ternary algebra is a ternary algebra together with a mapping $x \mapsto x^{*}$ from A into A which satisfies
(i) $\left(x^{*}\right)^{*}=x$,
(ii) $(\lambda x)^{*}=\bar{\lambda} x^{*}$,
(iii) $(x+y)^{*}=x^{*}+y^{*}$,
(iv) $[x y z]^{*}=\left[z^{*} y^{*} x^{*}\right]$
for all $x, y, z \in A$ and all $\lambda \in \mathbb{C}$. In the case that A is unital and e is its unit, we assume that $e^{*}=e$.
A is a normed ternary algebra if A is a ternary algebra and there exists a norm $\|$.$\| on A$ which satisfies $\|[x y z]\| \leq\|x\|\|y\|\|z\|$ for all $x, y, z \in A$. If A is a unital ternary algebra with unit element e, then $\|e\|=1$. By a Banach ternary algebra we mean a normed ternary algebra with a complete norm $\|$.$\| . If A$ is a ternary algebra, $x \in A$ is called central if $[x y z]=[z x y]=[y z x]$ for all $y, z \in A$. The set of all central elements of A is called the center of A which is denoted by $Z(A)$.

If A is $*$-normed ternary algebra and $Z(A)=0$, then we have $\left\|x^{*}\right\|=\|x\|$. A C^{*}-ternary algebra is a Banach $*$-ternary algebra if $\left\|\left[x^{*} y x\right]\right\|=\|x\|^{2}\|y\|$ for all x in A and y in $Z(A)$.

In 2010, Eshaghi and et al. [6] introduced the concept of a partial ternary derivation and proved the Hyers-Ulam-Rassias stability of partial ternary derivations in Banach ternary algebras. Recently, Javadian and et al. [10] established the Hyers-Ulam-Rassias stability of the partial ternary quadratic derivations in Banach ternary algebras by using the direct method.

Let A_{1}, \ldots, A_{n} be normed ternary algebras over the complex field \mathbb{C} and let B be a Banach ternary algebra over \mathbb{C}. As in [10], a mapping $\delta_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B$ is called a k-th partial ternary quadratic derivation if

$$
\begin{aligned}
& \delta_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+\delta_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \\
= & 2 \delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)+2 \delta_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right)
\end{aligned}
$$

and there exists a mapping $g_{k}: A_{k} \rightarrow B$ such that

$$
\begin{aligned}
& \delta_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)=\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) \delta_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& +\left[g_{k}\left(a_{k}\right) \delta_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]+\left[\delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right]
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$ and all $x_{i} \in A_{i}(i \neq k)$.
If, δ_{k} satisfies the additional condition

$$
\delta_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)=\left(\delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)\right)^{*}
$$

for all $a_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$, then δ_{k} is called a k-th partial ternary quadratic *-derivation.

Let \mathbb{K} denote a field and $|$.$| be a function (valuation absolute) from \mathbb{K}$ into $[0, \infty)$. By a non-Archimedean valuation we mean a function $|$.$| that satisfies the$
conditions $|r|=0$ if and only if $r=0,|r s|=|r||s|$ and the strong triangle inequality, namely,

$$
|r+s| \leq \max \{|r|,|s|\} \leq|r|+|s|
$$

for all $r, s \in \mathbb{K}$. The associated field \mathbb{K} is referred to as a non-Archimedean field. Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the mapping $|$.$| taking everything except 0$ into 1 and $|0|=0$.

Let X be a vector space over a field \mathbb{K} with a non-Archimedean nontrivial valuation |.|. A function $\|\|:. X \rightarrow \mathbb{R}$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\|$ for all $r \in \mathbb{K}, x \in X$;
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for all $x, y \in X$ (strong triangle inequality).

Then, $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
From the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\} \quad(n>m)
$$

holds, a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence if and only if $\left\{x_{n+1}-x_{n}\right\}_{n \in \mathbb{N}}$ converges to zero in a non-Archimedean normed space. By a complete nonArchimedean normed space, we mean one in which every Cauchy sequence is convergent.

Suppose that p is a prime number. For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=(a / b) p^{n_{x}}$, where a and b are integers not divisible by p. Define the p-adic absolute value $|x|_{p}:=p^{-n_{x}}$. Then \mid.| is a non-Archimedean norm on \mathbb{Q} with the p-adic absolute value $|\cdot|_{p}$. The completion of \mathbb{Q} with respect to $|$.$| is denoted by \mathbb{Q}_{p}$, which is called the p-adic number field.

By a non-Archimedean Banach ternary algebra we mean a complete nonArchimedean vector space A equipped with a ternary product $(x, y, z) \mapsto[x y z]$ of A^{3} into A which is \mathbb{K}-linear in each variables and associative in the sense that

$$
[x y[z w v]]=[x[y z w] v]=[[x y z] w v]
$$

and satisfies the following

$$
\|[x y z]\| \leq\|x\|\|y\|\|z\|
$$

for all $x, y, z, w, v \in A$. A non-Archimedean C^{*}-ternary algebra is a nonArchimedean Banach $*$-ternary algebra A if $\left\|\left[x^{*} y x\right]\right\|=\|x\|^{2}\|y\|$ for all $x \in A$ and $y \in Z(A)$.

We now recall a fundamental result in fixed point theory. Let X be a nonempty set. A function $d: X \times X \rightarrow[0, \infty]$ is called a non-Archimedean generalized metric on X if and only if d satisfies
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, z) \leq \max \{d(x, y), d(y, z)\}$
for all $x, y, z \in X$. Then (X, d) is called a non-Archimedean generalized metric space.

Now, we need the following fixed point theorem (see [5]):
Theorem 1.2.(Non-Archimedean Alternative Contraction Principle) Let (X, d) be a non-Archimedean generalized complete metric space and $\Lambda: X \rightarrow X$ is a strictly contractive mapping, that is,

$$
d(\Lambda x, \Lambda y) \leq L d(x, y) \quad(x, y \in X)
$$

with the Lipschitz constant $L<1$. If there exists a nonnegative integer n_{0} such that $d\left(\Lambda^{n_{0}+1} x, \Lambda^{n_{0}} x\right)<\infty$ for some $x \in X$, then the following statements are true:
(i) The sequence $\left\{\Lambda^{n} x\right\}$ converges to a fixed point x^{*} of Λ;
(ii) x^{*} is a unique fixed point of Λ in

$$
X^{*}=\left\{y \in X \mid d\left(\Lambda^{n_{0}} x, y\right)<\infty\right\}
$$

(iii) If $y \in X^{*}$, then

$$
d\left(y, x^{*}\right) \leq d(\Lambda y, y)
$$

In this paper, using the fixed point method, we prove the Hyers-UlamRassias stability and superstability of partial ternary quadratic derivations in nonArchimedean Banach ternary algebras and non-Archimedean C^{*}-ternary algebras.

2. Stability of Partial Ternary Quadratic Derivations in Non-Archimedean Banach Ternary Algebras

Throughout this section, we assume that A_{1}, \ldots, A_{n} are non-Archimedean ternary normed algebras over a non-Archimedean field \mathbb{K}, and B is a nonArchimedean Banach ternary algebra over \mathbb{K}. We denote that $0_{k}, 0_{B}$ are zero elements of A_{k}, B, respectively.

Theorem 2.1. Let $F_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B$ be a mapping with $F_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B}$. Assume that there exist a function $\varphi_{k}: A_{k}^{3} \rightarrow[0, \infty)$ and a quadratic mapping $g_{k}: A_{k} \rightarrow B$ such that

$$
\begin{align*}
& \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \tag{2.1}\\
& -2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \| \leq \varphi_{k}\left(a_{k}, b_{k}, 0_{k}\right)
\end{align*}
$$

and

$$
\begin{aligned}
& \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
(2.2) & -\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \| \\
& \leq \varphi_{k}\left(a_{k}, b_{k}, c_{k}\right)
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. Suppose that there exist a natural number $t \in \mathbb{K}$ and $L \in(0,1)$ such that

$$
\begin{equation*}
\varphi_{k}\left(t^{-1} a_{k}, t^{-1} b_{k}, t^{-1} c_{k}\right) \leq|t|^{-2} L \varphi_{k}\left(a_{k}, b_{k}, c_{k}\right) \tag{2.3}
\end{equation*}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$. Then there exists a unique k-th partial ternary quadratic derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, x_{n}\right)-\delta_{k}\left(x_{1}, \ldots, x_{n}\right)\right\| \leq|t|^{-2} L \psi\left(x_{k}\right) \tag{2.4}
\end{equation*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$, where

$$
\begin{align*}
\psi\left(x_{k}\right):= & \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right), \varphi_{k}\left(2 x_{k}, x_{k}, 0_{k}\right),\right. \tag{2.5}\\
& \left.\ldots, \varphi_{k}\left((k-1) x_{k}, x_{k}, 0_{k}\right)\right\} .
\end{align*}
$$

Proof. By (2.3), one can show that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}|t|^{2 m} \varphi_{k}\left(t^{-m} a_{k}, t^{-m} b_{k}, t^{-m} c_{k}\right)=0 \tag{2.6}
\end{equation*}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$. One can use induction on m to show that

$$
\begin{align*}
& \left\|F_{k}\left(x_{1}, \ldots, m x_{k}, \ldots, x_{n}\right)-m^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \tag{2.7}\\
& \leq \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right), \varphi_{k}\left(2 x_{k}, x_{k}, 0_{k}\right),\right. \\
& \left.\ldots, \varphi_{k}\left((m-1) x_{k}, x_{k}, 0_{k}\right)\right\}
\end{align*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$ and all non-negative integers m. Indeed, putting $a_{k}=b_{k}=x_{k}$ in (2.1), we get

$$
\begin{align*}
& \left\|F_{k}\left(x_{1}, \ldots, 2 x_{k}, \ldots, x_{n}\right)-4 F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \tag{2.8}\\
& \leq \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right)\right\}
\end{align*}
$$

for all $x_{i} \in A_{i}, \quad i=1,2, \ldots, n$. This proves (2.7) hold for $m=2$. Let (2.7) holds for $m=1,2, \ldots, j$. Replacing a_{k}, b_{k} with $j x_{k}, x_{k}$, respectively, in (2.1), we obtain

$$
\begin{align*}
& \| F_{k}\left(x_{1}, \ldots,(j+1) x_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots,(j-1) x_{k}, \ldots, x_{n}\right) \\
& -2 F_{k}\left(x_{1}, \ldots, j x_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \| \\
& \leq \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(j x_{k}, x_{k}, 0_{k}\right)\right\} . \tag{2.9}
\end{align*}
$$

Since

$$
\begin{align*}
& F_{k}\left(x_{1}, \ldots,(j+1) x_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots,(j-1) x_{k}, \ldots, x_{n}\right) \\
& \quad-2 F_{k}\left(x_{1}, \ldots, j x_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \\
& =F_{k}\left(x_{1}, \ldots,(j+1) x_{k}, \ldots, x_{n}\right)-(j+1)^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \\
& \quad+F_{k}\left(x_{1}, \ldots,(j-1) x_{k}, \ldots, x_{n}\right)-(j-1)^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \\
& \quad-2\left[F_{k}\left(x_{1}, \ldots, j x_{k}, \ldots, x_{n}\right)-j^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right] \tag{2.10}
\end{align*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$, it follows from induction hypothesis and (2.9) that for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$,

$$
\text { l) } \begin{align*}
\| & F_{k}\left(x_{1}, \ldots,(j+1) x_{k}, \ldots, x_{n}\right)-(j+1)^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \| \tag{2.11}\\
\leq & \max \left\{\| F_{k}\left(x_{1}, \ldots,(j+1) x_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots,(j-1) x_{k}, \ldots, x_{n}\right)\right. \\
& -2 F_{k}\left(x_{1}, \ldots, j x_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \|, \\
& \left\|F_{k}\left(x_{1}, \ldots,(j-1) x_{k}, \ldots, x_{n}\right)-(j-1)^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\|, \\
& \left.|2|\left\|j^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-F_{k}\left(x_{1}, \ldots, j x_{k}, \ldots, x_{n}\right)\right\|\right\} \\
\leq & \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right), \varphi_{k}\left(2 x_{k}, x_{k}, 0_{k}\right), \ldots, \varphi_{k}\left(j x_{k}, x_{k}, 0_{k}\right)\right\} .
\end{align*}
$$

This proves (2.7) for all $m \geq 2$. In particular, for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, t x_{k}, \ldots, x_{n}\right)-t^{2} F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \leq \psi\left(x_{k}\right) \tag{2.12}
\end{equation*}
$$

Replacing x_{k} by $t^{-1} x_{k}$ in (2.12), we get

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-t^{2} F_{k}\left(x_{1}, \ldots, t^{-1} x_{k}, \ldots, x_{n}\right)\right\| \leq \psi\left(t^{-1} x_{k}\right) \tag{2.13}
\end{equation*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$.
Let us define a set X of all functions $H_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B$ by

$$
\begin{aligned}
X= & \left\{H_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B, \quad H_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B},\right. \\
& \left.x_{i} \in A_{i}, \quad i=1,2, \ldots, n\right\}
\end{aligned}
$$

and introduce ρ on X as follows:

$$
\begin{align*}
& \rho\left(F_{k}, H_{k}\right):=\inf \left\{C \in(0, \infty): \| F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right. \tag{2.14}\\
& \left.\left.\quad-H_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \| \leq C \psi\left(x_{k}\right), \quad \forall x_{i} \in A_{i}, \quad i=1,2, \ldots, n\right)\right\} .
\end{align*}
$$

It is easy to see that ρ defines a generalized non-Archimedean complete metric on X (see [1],[2] and [12]). Now we consider the function $J: X \rightarrow X$ defined by

$$
J\left(H_{k}\right)\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right):=t^{2} H_{k}\left(x_{1}, \ldots, t^{-1} x_{k}, \ldots, x_{n}\right)
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$ and $H_{k} \in X$. Then J is strictly contractive on X, in fact if for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$,

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-H_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \leq C \psi\left(x_{k}\right) \tag{2.15}
\end{equation*}
$$

then by (2.3),

$$
\begin{align*}
& \left\|J\left(F_{k}\right)\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-J\left(H_{k}\right)\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \tag{2.16}\\
& =|t|^{2}\left\|F_{k}\left(x_{1}, \ldots, t^{-1} x_{k}, \ldots, x_{n}\right)-H_{k}\left(x_{1}, \ldots, t^{-1} x_{k}, \ldots, x_{n}\right)\right\| \\
& \leq C|t|^{2} \psi\left(t^{-1} x_{k}\right) \leq C L \psi\left(x_{k}\right) \quad\left(x_{k} \in A_{k}\right) .
\end{align*}
$$

So it follows that

$$
\begin{equation*}
\rho\left(J\left(F_{k}\right), J\left(H_{k}\right)\right) \leq L \rho\left(F_{k}, H_{k}\right) \quad\left(F_{k}, H_{k} \in X\right) \tag{2.17}
\end{equation*}
$$

Hence, J is a strictly contractive mapping with Lipschitz constant L. Also we obtain by (2.13) that

$$
\begin{align*}
& \left\|J\left(F_{k}\right)\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \tag{2.18}\\
& =\left\|t^{2} F_{k}\left(x_{1}, \ldots, t^{-1} x_{k}, \ldots, x_{n}\right)-F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right\| \\
& \leq \psi\left(t^{-1} x_{k}\right) \leq|t|^{-2} L \psi\left(x_{k}\right)
\end{align*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$. This means that $\rho\left(J\left(F_{k}\right), F_{k}\right) \leq|t|^{-2} L<\infty$. Now, from Theorem 1.2, it follows that J has a unique fixed point $\delta_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B$ in the set

$$
U_{k}=\left\{H_{k} \in X: \rho\left(H_{k}, J\left(F_{k}\right)\right)<\infty\right\}
$$

and for each $x_{i} \in A_{i}(i=1,2, \ldots, n)$,

$$
\begin{align*}
\delta_{k}\left(x_{1}, \ldots, x_{n}\right) & :=\lim _{m \rightarrow \infty} J^{m}\left(F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)\right) \tag{2.19}\\
& =\lim _{m \rightarrow \infty} t^{2 m}\left(F_{k}\left(x_{1}, \ldots, t^{-m} x_{k}, \ldots, x_{n}\right)\right) .
\end{align*}
$$

Then we obtain from (2.1) and (2.6) that

$$
\begin{aligned}
& \| \delta_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+\delta_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \\
&-2 \delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 \delta_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \| \\
&= \lim _{m \rightarrow \infty}|t|^{2 m} \| F_{k}\left(x_{1}, \ldots, t^{-m}\left(a_{k}+b_{k}\right), \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, t^{-m}\left(a_{k}-b_{k}\right), \ldots, x_{n}\right) \\
&-2 F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, t^{-m} b_{k}, \ldots, x_{n}\right) \| \\
& \leq \quad \lim _{m \rightarrow \infty}|t|^{2 m} \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(t^{-m} a_{k}, t^{-m} b_{k}, 0_{k}\right)\right\}=0
\end{aligned}
$$

for each $a_{k}, b_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. This shows that δ_{k} is partial quadratic. It follows from Theorem 1.2 that

$$
\rho\left(F_{k}, \delta_{k}\right) \leq \rho\left(J\left(F_{k}\right), F_{k}\right)
$$

that is, δ_{k} is a partial quadratic mapping which satisfies (2.4).
Now, replacing a_{k}, b_{k}, c_{k} with $t^{-m} a_{k}, t^{-m} b_{k}, t^{-m} c_{k}$, respectively, in (2.2), we obtain

$$
\begin{aligned}
& \| F_{k}\left(x_{1}, \ldots,\left[\left(t^{-3 m}\right) a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right) \\
&-\left[t^{-2 m} g_{k}\left(a_{k}\right) t^{-2 m} g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, t^{-m} c_{k}, \ldots, x_{n}\right)\right] \\
& \quad-\left[t^{-2 m} g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, t^{-m} b_{k}, \ldots, x_{n}\right) t^{-2 m} g_{k}\left(c_{k}\right)\right] \\
&-\left[F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right) t^{-2 m} g_{k}\left(b_{k}\right) t^{-2 m} g_{k}\left(c_{k}\right)\right] \| \\
& \leq \varphi_{k}\left(t^{-m} a_{k}, t^{-m} b_{k}, t^{-m} c_{k}\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \| t^{6 m} F_{k}\left(x_{1}, \ldots, t^{-3 m}\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right) \\
& \quad-t^{6 m}\left[t^{-2 m} g_{k}\left(a_{k}\right) t^{-2 m} g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, t^{-m} c_{k}, \ldots, x_{n}\right)\right] \\
& \quad-t^{6 m}\left[t^{-2 m} g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, t^{-m} b_{k}, \ldots, x_{n}\right) t^{-2 m} g_{k}\left(c_{k}\right)\right] \\
& \quad-t^{6 m}\left[F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right) t^{-2 m} g_{k}\left(b_{k}\right) t^{-2 m} g_{k}\left(c_{k}\right)\right] \| \\
& \leq \quad|t|^{6 m} \varphi_{k}\left(t^{-m} a_{k}, t^{-m} b_{k}, t^{-m} c_{k}\right)
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. Taking the limit as $m \rightarrow \infty$ in above inequality, we obtain from (2.6) that

$$
\begin{aligned}
\| & \lim _{m \rightarrow \infty} t^{6 m} F_{k}\left(x_{1}, \ldots, t^{-3 m}\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right) \\
& -\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) \lim _{m \rightarrow \infty} t^{2 m} F_{k}\left(x_{1}, \ldots, t^{-m} c_{k}, \ldots, x_{n}\right)\right] \\
& -\left[g_{k}\left(a_{k}\right) \lim _{m \rightarrow \infty} t^{2 m} F_{k}\left(x_{1}, \ldots, t^{-m} b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right] \\
& -\left[\lim _{m \rightarrow \infty} t^{2 m} F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \| \\
\leq & \lim _{m \rightarrow \infty}|t|^{6 m} \varphi_{k}\left(t^{-m} a_{k}, t^{-m} b_{k}, t^{-m} c_{k}\right)=0
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. Since g_{k} is a quadratic mapping, we have

$$
\begin{aligned}
& \delta_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)=\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) \delta_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& +\left[g_{k}\left(a_{k}\right) \delta_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]+\left[\delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right]
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$ and all $x_{i} \in A_{i}(i \neq k)$. Thus $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a k-th partial ternary quadratic derivation, satisfying (2.4), as desired.

In the following corollaries, \mathbb{Q}_{p} is the p-adic number field, where $p>2$ is a prime number.

By Theorem 2.1, we show the following Hyers-Ulam-Rassias stability of partial ternary quadratic derivations on non-Archimedean Banach ternary algebras.

Corollary 2.2. Let A_{1}, \ldots, A_{n} be non-Archimedean ternary normed algebras over \mathbb{Q}_{p} with norm $\|\cdot\|$ and $\left(B,\|\cdot\|_{B}\right)$ be a non-Archimedean Banach ternary algebra over \mathbb{Q}_{p}. Suppose that $F_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a mapping and $g_{k}: A_{k} \rightarrow B$ is a quadratic mapping such that for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$,

$$
\begin{align*}
& \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \tag{2.20}\\
& -2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \|_{B} \leq \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}\right)
\end{align*}
$$

and

$$
\begin{aligned}
& (2.21) \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& \quad-\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \|_{B} \\
& \quad \leq \quad \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right)
\end{aligned}
$$

for some $\theta>0$ and $r \geq 0$ with $r<2$. Then there exists a unique k-th partial ternary quadratic derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that

$$
\left\|F_{k}\left(x_{1}, \ldots, x_{n}\right)-\delta_{k}\left(x_{1}, \ldots, x_{n}\right)\right\|_{B} \leq 2 \theta p^{r}\left\|x_{k}\right\|^{r}
$$

holds for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$.
Proof. By (2.20), we have $F_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B}$. Let

$$
\begin{equation*}
\varphi_{k}\left(a_{k}, b_{k}, c_{k}\right):=\theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right) \tag{2.22}
\end{equation*}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$. Then by replacing a_{k}, b_{k}, c_{k} with $p^{-1} a_{k}, p^{-1} b_{k}, p^{-1} c_{k}$, respectively, in (2.22), we have

$$
\begin{aligned}
\varphi_{k}\left(p^{-1} a_{k}, p^{-1} b_{k}, p^{-1} c_{k}\right) & =\theta\left(\left\|p^{-1} a_{k}\right\|^{r}+\left\|p^{-1} b_{k}\right\|^{r}+\left\|p^{-1} c_{k}\right\|^{r}\right) \\
& =\theta\left(\left|p^{-1}\right|^{r}\left\|a_{k}\right\|^{r}+\left|p^{-1}\right|^{r}\left\|b_{k}\right\|^{r}+\left|p^{-1}\right|^{r}\left\|c_{k}\right\|^{r}\right) \\
& =\theta p^{r}\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right) \\
& =p^{r} \varphi_{k}\left(a_{k}, b_{k}, c_{k}\right)
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$, since $\left|p^{-1}\right|=p$ by the definition of the p-adic absolute value. Also,

$$
\begin{aligned}
\psi\left(x_{k}\right):= & \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right), \varphi_{k}\left(2 x_{k}, x_{k}, 0_{k}\right),\right. \\
& \left.\ldots, \varphi_{k}\left((p-1) x_{k}, x_{k}, 0_{k}\right)\right\}=2 \theta\left\|x_{k}\right\|^{r}
\end{aligned}
$$

for all $x_{k} \in A_{k}$.

In Theorem 2.1, by putting $L:=p^{r-2}<1$, we obtain the conclusion of the theorem.

Similarly, we can obtain the following theorem. So, we will omit the proof.
Theorem 2.3. Let $F_{k}: A_{1} \times \ldots \times A_{n} \rightarrow B$ be a mapping with $F_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B}$. Assume that there exist a function $\varphi_{k}: A_{k}^{3} \rightarrow[0, \infty)$ and a quadratic mapping $g_{k}: A_{k} \rightarrow B$ such that

$$
\begin{aligned}
& (2.23) \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \\
& \quad-2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \| \leq \varphi_{k}\left(a_{k}, b_{k}, 0_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (2.24) \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& \quad-\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \| \\
& \quad \leq \varphi_{k}\left(a_{k}, b_{k}, c_{k}\right)
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. If there exist a natural number $t \in \mathbb{K}$ and $0<L<1$ such that

$$
\begin{equation*}
\varphi_{k}\left(t a_{k}, t b_{k}, t c_{k}\right) \leq|t|^{2} L \varphi_{k}\left(a_{k}, b_{k}, c_{k}\right) \tag{2.25}
\end{equation*}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$, then there exists a unique k-th partial ternary quadratic derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, x_{n}\right)-\delta_{k}\left(x_{1}, \ldots, x_{n}\right)\right\| \leq|t|^{2} L \psi\left(x_{k}\right) \tag{2.26}
\end{equation*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$, where

$$
\begin{align*}
\psi\left(x_{k}\right):= & \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(x_{k}, x_{k}, 0_{k}\right), \varphi_{k}\left(2 x_{k}, x_{k}, 0_{k}\right)\right. \tag{2.27}\\
& \left.\ldots, \varphi_{k}\left((k-1) x_{k}, x_{k}, 0_{k}\right)\right\}
\end{align*}
$$

The following corollary is similar to Corollary 2.2 for the case where $r>2$.
Corollary 2.4. Let A_{1}, \ldots, A_{n} be non-Archimedean ternary normed algebras over \mathbb{Q}_{p} with norm $\|\cdot\|$ and $\left(B,\|\cdot\|_{B}\right)$ be a non-Archimedean Banach ternary algebra over \mathbb{Q}_{p}. Suppose that $F_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a mapping and $g_{k}: A_{k} \rightarrow B$ is a quadratic mapping such that for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$,
$(2.28) \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right)$

$$
-2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \|_{B} \leq \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}\right)
$$

and

$$
\begin{aligned}
& (2.29) \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& \quad-\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \|_{B} \\
& \quad \leq \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right)
\end{aligned}
$$

for some $\theta>0$ and $r \geq 0$ with $r>2$. Then there exists a unique k-th partial ternary quadratic derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that

$$
\left\|F_{k}\left(x_{1}, \ldots, x_{n}\right)-\delta_{k}\left(x_{1}, \ldots, x_{n}\right)\right\|_{B} \leq 2 \theta p^{-r}\left\|x_{k}\right\|^{r}
$$

holds for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$.
Proof. From (2.28), we have $F_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B}$. By putting $\varphi_{k}\left(a_{k}, b_{k}, c_{k}\right):=$ $\theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right)$ and $L:=p^{2-r}<1$ in Theorem 2.3, we get the desired result.

Moreover, we have the following result for the superstability of k-th partial ternary quadratic derivations.
Corollary 2.5. Let r, s, t and θ be real numbers such that $r+s+t<-2$ and $\theta \in(0, \infty)$. Let A_{1}, \ldots, A_{n} be non-Archimedean ternary normed algebras over \mathbb{Q}_{p} with norm $\|\cdot\|$ and $\left(B,\|\cdot\|_{B}\right)$ be a non-Archimedean Banach ternary algebra over \mathbb{Q}_{p}. Assume that $F_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a mapping and $g_{k}: A_{k} \rightarrow B$ is a quadratic mapping such that

$$
\begin{aligned}
& \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \\
& -2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \|_{B} \leq \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \\
& -\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \|_{B} \\
& \leq \quad \theta\left(\left\|a_{k}\right\|^{r}\left\|b_{k}\right\|^{s}\left\|c_{k}\right\|^{t}\right)
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. Then F_{k} is a k-th partial ternary quadratic derivation.
Proof. It follows from Theorem 2.1, by putting

$$
\varphi_{k}\left(a_{k}, b_{k}, c_{k}\right):=\theta\left(\left\|a_{k}\right\|^{r}\left\|b_{k}\right\|^{s}\left\|c_{k}\right\|^{t}\right)
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}$.
We can prove a same result with condition $r+s+t>-2$ by using of Theorem 2.3.

3. Stability of Partial Ternary Quadratic *-Derivations in Non-Archimedean C^{*}-Ternary Algebras

In this section, assume that A_{1}, \ldots, A_{n} are non-Archimedean $*$-normed ternary algebras over \mathbb{C}, and B is a non-Archimedean C^{*}-ternary algebra.

Theorem 3.1. Let $F_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ be a mapping with
$F_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{B}$. Suppose that there exist a function $\varphi_{k}: A_{k}^{3} \rightarrow[0, \infty)$ and a quadratic mapping $g_{k}: A_{k} \rightarrow B$ such that (2.1) and (2.2) hold and

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\left(F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)\right)^{*}\right\| \leq \varphi_{k}\left(a_{k}, 0_{k}, 0_{k}\right) \tag{3.1}
\end{equation*}
$$

for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$. If there exist a natural number $t \in \mathbb{K}$ and $0<L<1$ and (2.3) holds, then there exists a unique k-th partial ternary quadratic *-derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that (2.4) holds.
Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique k-th partial ternary quadratic derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ satisfying (2.4), given by

$$
\begin{equation*}
\delta_{k}\left(x_{1}, \ldots, x_{n}\right):=\lim _{m \rightarrow \infty} t^{2 m}\left(F_{k}\left(x_{1}, \ldots, t^{-m} x_{k}, \ldots, x_{n}\right)\right) \tag{3.2}
\end{equation*}
$$

for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$. Now, we have to show that δ_{k} is $*$-preserving. So it follows from (3.2) that

$$
\begin{aligned}
& \left\|\delta_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\left(\delta_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)\right)^{*}\right\| \\
& =\lim _{m \rightarrow \infty}|t|^{2 m}\left\|F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}^{*}, \ldots, x_{n}\right)-\left(F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right)\right)^{*}\right\| \\
& =\lim _{m \rightarrow \infty}|t|^{2 m}\left\|F_{k}\left(x_{1}, \ldots,\left(t^{-m} a_{k}\right)^{*}, \ldots, x_{n}\right)-\left(F_{k}\left(x_{1}, \ldots, t^{-m} a_{k}, \ldots, x_{n}\right)\right)^{*}\right\| \\
& \leq \lim _{m \rightarrow \infty}|t|^{2 m} \max \left\{\varphi_{k}\left(0_{k}, 0_{k}, 0_{k}\right), \varphi_{k}\left(t^{-m} a_{k}, 0_{k}, 0_{k}\right)\right\}=0
\end{aligned}
$$

for each $a_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$.
Thus $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a k-th partial ternary quadratic $*$-derivation satisfying (2.4), as desired.

Now, we prove the following Hyers-Ulam-Rassias stability problem for k-th partial ternary quadratic $*$-derivations on non-Archimedean C^{*}-ternary algebras.
Corollary 3.2. Let A_{1}, \ldots, A_{n} be non-Archimedean *-normed ternary algebras over \mathbb{Q}_{p} with norm $\|\cdot\|$ and $\left(B,\|\cdot\|_{B}\right)$ be a non-Archimedean C^{*}-ternary algebra over \mathbb{Q}_{p}. Suppose that $F_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ is a mapping and $g_{k}: A_{k} \rightarrow B$ is a quadratic mapping such that for all $a_{k}, b_{k}, c_{k} \in A_{k}, x_{i} \in A_{i}(i \neq k)$,

$$
\begin{align*}
& \| F_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)+F_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \tag{3.3}\\
& -2 F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2 F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \|_{B} \leq \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}\right)
\end{align*}
$$

$$
\begin{align*}
& \| F_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[g_{k}\left(a_{k}\right) g_{k}\left(b_{k}\right) F_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \tag{3.4}\\
& -\left[g_{k}\left(a_{k}\right) F_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) g_{k}\left(c_{k}\right)\right]-\left[F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) g_{k}\left(b_{k}\right) g_{k}\left(c_{k}\right)\right] \|_{B} \\
\leq & \theta\left(\left\|a_{k}\right\|^{r}+\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left\|F_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\left(F_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)\right)^{*}\right\|_{B} \leq \theta\left\|a_{k}\right\|^{r} \tag{3.5}
\end{equation*}
$$

for some $\theta>0$ and $r \geq 0$ with $r<2$. Then there exists a unique k-th partial ternary quadratic $*$-derivation $\delta_{k}: A_{1} \times \cdots \times A_{n} \rightarrow B$ such that

$$
\left\|F_{k}\left(x_{1}, \ldots, x_{n}\right)-\delta_{k}\left(x_{1}, \ldots, x_{n}\right)\right\|_{B} \leq 2 \theta p^{r}\left\|x_{k}\right\|^{r}
$$

holds for all $x_{i} \in A_{i}(i=1,2, \ldots, n)$.
Proof. The proof follows from Theorem 3.1, by taking $\varphi_{k}\left(a_{k}, b_{k}, c_{k}\right):=\theta\left(\left\|a_{k}\right\|^{r}+\right.$ $\left\|b_{k}\right\|^{r}+\left\|c_{k}\right\|^{r}$) for all $a_{k}, b_{k}, c_{k} \in A_{k}$ and $L=p^{r-2}$, we get the desired result.

Moreover, we can prove a same result with condition $r>2$.
Acknowledgements. The authors would like to thank the referee for the careful and detailed reading of the manuscript and valuable suggestions and comments.

References

[1] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal Pure Appl. Math., 4(1)(2003), 1-7.
[2] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
[3] Y. Cho, R. Saadati and J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie C^{*}-algebras via fixed point method, Discrete Dynamics in Nature and Society 2012, Article ID373904(2012), 1-9.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[5] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc., 126(1968), 305-309.
[6] M. Eshaghi, M. B. Savadkouhi, M. Bidkham, C. Park and J. R. Lee, Nearly partial derivations on Banach ternary algebras, J. Math. Stat., 6(4)(2010), 454-461.
[7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl., 184(1994), 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27(1941), 222-224.
[9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[10] A. Javadian, M. E. Gordji and M. B. Savadkouhi, Approximately partial ternary quadratic derivations on Banach ternary algebras, J. Nonlinear Sci. Appl., 4(1)(2011), 60-69.
[11] T. Miura, G. Hirasawa and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl., 319(2006), 522-530.
[12] A. K. Mirmostafaee, Hyers-Ulam stability of cubic mappings in non-Archimedean normed spaces, Kyungpook Math. J., 50(2010), 315-327.
[13] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(2006), 361-376.
[14] M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Sci., Article ID 93942(2006), 1-8.
[15] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337(2008), 399-415.
[16] A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasiBanach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335(2007), 763-778.
[17] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711-720.
[18] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc., 132(2004), 1739-1745.
[19] C. Park and J. M. Rassias, Stability of the Jensen type functional equation in C^{*} algebras: a fixed point approach, Abstr. Appl. Anal., 2009, Article ID 360432(2009), 1-17.
[20] C. Park and T. M. Rassias, Homomorphisms in C^{*}-ternary algebras and $J B^{*}$-triples, J. Math. Anal. Appl., 337(2008), 13-20.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[22] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
[23] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integ. Equ. Oper. Theory, 18(1994), 118-122.
[24] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.

[^0]: * Corresponding Author.

 Received January 22, 2015; revised May 15, 2015; accepted May 27, 2015.
 2010 Mathematics Subject Classification: Primary 39B52; Secondary 46L05, 47B48, 39B82, 47H10, 13N15, 46L57, 17A40.
 Key words and phrases: Partial ternary quadratic derivation, non-Archimedean ternary algebra, Hyers-Ulam-Rassias stability, fixed point alternative, non-Archimedean C^{*} ternary algebra.

