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ABSTRACT. In this paper, some basic results concerning the existence, strict and nonstrict
inequalities and existence of the maximal and minimal solutions are proved for a hybrid
causal differential equation. Our results generalize some basic results of Leela and Laksh-
mikantham [13] and Dhage and Lakshmikantham [10] respectively for the nonlinear first
order classical and hybrid differential equations.

1. Introduction

Let R be the real line and let, unless otherwise mentioned, J = [to,to + a) be
a bounded interval in R for some tp,a € R with a > 0. Let C(J,R) be the class of
continuous real-valued functions defined on .J. An operator @ : C(J,R) = F — FE'is
said to be causal or nonanticipative if for any z,y € E with z(s) = y(s), top < s <,
we have that (Qz)(s) = (Qy)(s) for tg < s < t, t < to + a. Note that the sum
and product of two causal operators is again a causal operator. Again, if {Q,} is a
sequence of causal operators in E such that

lim (Qnz)(t) = (Qz)(t)

n—oo
for (t,z) € J x E, then @ is again a causal operator on E into itself.

A differential equation which involves the causal operator is called a causal
differential equation. Thus, the initial value problems of causal differential equations
are represented by

(1.1) 2/ (t) = (Qz)(t), te J,}

{L‘(to) =29 € R.
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For the study of causal differential equations, see Corduneunu [1], a recent paper
by Drici et al. [11] and the references herein. The importance of the investigations
of causal differential equations lies in the fact that they include several dynamic
systems. The consideration of hybrid differential equations is implicit in the works
of Krasnoselskii [3] and extensively treated in the several papers on perturbed dif-
ferential equations. See Burton [4], Dhage [5] and the references therein. This class
of differential equations includes the perturbations of original differential equations
in different ways. A sharp classification of different types of perturbations of differ-
ential equations appears in Dhage and Lakshmikantham [10] which can be treated
with hybrid fixed point theory (see Dhage [5]-[6]). In this paper, we initiate the
basic theory of hybrid causal differential equations.

The causal differential equations can be perturbed in several ways to obtain
different types of hybrid causal differential equations. Here, we consider the hybrid
causal differential equation involving the mixed type of perturbations of second
type. In such perturbations, the unknown function under derivative is perturbed in
a linear and quadratic way.

Given a continuous operator @ : E = C(J,R) — E, consider the initial value
problems for hybrid causal differential equation (in short HCDE) given by

d [a(t) — k(t,z(t)]
(1.2) dt {f(tx(t))} = (Q2)(t), teJ,
z(to) = o € R,

where f: J xR — R — {0} and k : J x R — R are continuous functions.

The most simple special case of the HCDE (1.2) is the following IVP of HDE,

d [a(t) = k(t,=(t)]
(1.3) dt [f(trv(t))} =gt,z(1), te,
x(tg) = x0 € R.

Similarly, another example of a hybrid causal integro-differential equation is the
following IVP of hybrid integro-differential equations,

(1.4) % [W} =9 (tvx(t)’ /t: k(t,5,2(s)) ds) L ted,

Tty = o

where, all the functions involved in (1.4) belong to the appropriate function spaces.

The HDE (1.3) has recently been studied by Dhage [5] via hybrid fixed point
theory in Banach algebras. However, the hybrid integro-differential equations of
the type (1.4) are not discussed yet, but can be treated similarly. See Dhage and
Lakshmikantham [10].
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2. Strict and Nonstrict Inequalities
We list the following hypotheses.
x —k(t,x)
f(t,x)

(Bo) The causal operator ) is quasi-nondecreasing, that is,

(Ag) The function z — is increasing in R for all ¢ € J.

z(tr) = y(t1), =(t) <y(t), to <t <t,
implies
(Qz)(t1) = (Qu)(t1), (Qz)(t) < (Qy)(?)

for tg <t <t; <tp+a.

We begin by proving the basic results dealing with hybrid causal differential
inequalities.

Theorem 2.1. Assume that hypotheses (Ag) and (By) hold. Suppose that there
exist y,z € C(J,R) such that

d [y(t) — k(t,yt))]
(1.1) il Jev0) | < (Qy)()
and
d [2(t) — k(t, 2(t))]
(1.2) o _W- > (Q=2)(t)
fort e J. If one of the inequalities (1.1) and (1.2) is strict and
(1.3) y(to) < z(to),
then
(1.4) y(t) < =z(t)
for allt € J.

Proof. Assume that the conclusion (1.4) is false and that

d [z(t) — k(t, 2())

| fe) } > (Q2)()

for t € J. Denote

_ y(@®) —k(ty(t)) _ 2(t) = k(¢ 2(1)
Y(t)= —=—"———-" and Z(t)= T i)

fort € J.
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Now continuity of y and z together with the inequality (1.3) implies that there
exists a t; > tp such that

(L5) y(t) = 2(t) and y(t) < 2(¢)

for all tg <t < t;. Since @ is quasi-nondecreasing, the expressions in (1.5) imply
that

(1.6) (Qy)(t1) = (Q2)(t1) and (Qy)(t) < (Q2)(?)
for all tg <t < t4.
As hypothesis (Ag) holds, it follows from (1.5) that

(1.7) Y(t1)=Z(t1) and Y(t) < Z(¢)
for all to <t < ¢;. The above relation (1.7) further yields

Y(ti+h)—-Y(t1) - Z(t1+h)— Z(t1)
h h

for small h < 0. Taking the limit as h — 0, we obtain
(1.8) Y'(t1) > Z'(t1).
Hence from (1.6) and (1.8), we get

(Qy)(t1) 2 Y'(t1) = Z'(t1) > (Q2)(t1).
This is a contradiction and the proof is complete. O

The next result is about the nonstrict inequality for the HCDE (1.2) on J which
requires a one-sided Lipschitz condition.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Suppose that
there exists a real number L > 0 such that

o L ls) ~ kls,y(s)) _ 2(s) — K(s,=(s)
(L9 (@O - @O <L sup 1727 75 F(5,2())

whenever y(s) > z(s), to < s <t. Then,

(1.10) y(t()) S Z(to)
implies
(1.11) y(t) < 2(t)

forallt € J.
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Proof. Let € > 0 and let a real number L > 0 be given. Set

(1.12) ze(t) — k(t, 2(1)) z2(t) — k(t, z(t)) + ee2L(t—to)

Ftze)  f(t =)

so that

lt) — k{1, 2e(0) _ 2(1) — k(t,2(1)
7t 2(0) =)
Define
_2(t) = k(t, 2(t)) _ z(t) — k(t, 2(¢))
20 = =52 0) 420 =""F 2

fort € J.
Now using the one-sided Lipschitz condition (1.9), we obtain

(Qz)(t) — (Q2)(t) < L sup [Z.(s)— Z(s)] = Lee?L(t=to),

to SSSt
Now,

Z(t)

Z'(t) + 2Lee?L(t=t)

Q2)(t) + 2Leec*H(t10)

Qzc)(t) + 9 Lee2L(t—to) _ [ ce2L(t—to)
Qze)(t) + Lee2L(t—to)

Qze)(t)

AVARY]

(
(
(
(

V

for all t € J. Also, we have
Z(to) > Z(tg) > Y(to).
Now we apply Theorem 2.1 with z = z, to yield
Y(t) < Z(t)
for all £ € J. On taking € — 0 in the above inequality, we get

Y(t) < Z(t)

1073

which further in view of hypothesis (Ap) implies that (1.11) holds on J. This

completes the proof.

O

Remark 2.1. The conclusion of Theorems 2.1 and 2.2 also remains true if we
replace the derivative in the inequalities (1.1) and (1.2) by Dini-derivative D_ of

z(t) — k(t, =(t))
f(t,2(t))

the function on the bounded interval J.
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As an application of Theorem 2.1, consider a IVP of nonlinear hybrid integro-
differential equation,

(1.13) @ | ey |10 +/ g(t,s,x(s))ds, t € J,

to

Z‘(to) =129 € R,

where f: IXR—->R—-{0}, k: JxR—->R,g:JxJxR—>Randqg:J — R are
continuous.
Assume that g(t, s, z) is monotone increasing in x for each (¢, s) and

¢ [0kt

a | feywy =007 / 9t 5,y(s)) ds = (Qu)(¥)

to

and
d (1) = h{t,=(1)
dt | f(t,2(t)
for all ¢ € J and one of the above inequalities is strict. Further, if the hypothesis
(Ap) holds, then y(tg) < z(to) implies y(t) < z(t) for all ¢t € J.

> qt) + / olt, 5, 2(5)) ds = (Q2)(1)

to

3. Existence Result

In this section, we prove an existence result for the HCDE (1.2) on a closed and
bounded interval J = [tg, to + a] under mixed Lipschitz and compactness conditions
on the nonlinearities involved in it. We place the HCDE (1.2) in the space C(J,R)
of continuous real-valued functions defined on J. Define a supremum norm || - || in
C(J,R) defined by

o]l = sup ()
teJ

and a multiplication “ -7 in C(J,R) by

(z-y)(t) = (zy)(t) = 2(t)y(t)

for z,y € C(J,R). Clearly C(J,R) is a Banach algebra with respect to the above
norm and multiplication in it. By L'(J,R) we denote the space of Lebesgue inte-

grable real-valued functions on J equipped with the norm || - ||z1 defined by
to-‘r&
fallos = [ fats) ds:
to

We prove the existence of solution for the HCDE (1.2) via a hybrid fixed point
theorem in Banach algebras due to Dhage [5, 7].

Theorem 3.1. Let S be a closed conver and bounded subset of the Banach algebra
E andlet A,C: E — E and B : S — FE be three operators such that
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a) A and C are Lipschitz with the Lipschitz constants a and 3 respectively,

(a)

(b) B is compact and continuous,

(¢c) x=AxBy+Cx forallye S =z €S, and

(d) aM + B < 1, where M = ||B(S)|| = sup{||Bz|| : = € S}.

Then the operator equation Ax Bx + Cx = = has a solution in S.

We consider the following hypotheses in what follows.

(A1) There exist constants Ly > 0 and Ly > 0 such that

[f(t,2) = f(t9)] < Lale -yl
and
|k(t, ) = k(t, y)| < La|z — y|
forallt € J and z,y € R.
(A3) There exists a function h € L' (J,R) such that

[(Qz)(t)] < h(t), t € J,
forall z € E.

The following lemma is useful in the sequel.

Lemma 3.1. Assume that hypothesis (Ag) holds. Then for any h € L*(J,R,), a
t) — k(t,x(t

function z € C(J,R) such that t — 2(t) — k(t,2(t))

1s differentiable is a solution
fam)
of the HCDE

d [=(t) - k(t,x(t))}

— | —————"+—| =h(), te
5.1) e RO

l‘(to) =x9 € R,

if and only if x satisfies the hybrid causal integral equation (HCIE)

(32) @) = k(t, 2(t) + [f(t,2(1))] (W +/t h(s) ds), te

Proof. Let h € L'(J,Ry). Assume first that z is a solution of the HCDE (3.1).
(t) — k(t, 2(t)) d [I(t) — k(t, x(t))}

is differentiable, whence —
[t 2(1)) dt [ f(tz(t))
is integrable on J. Applying integration to (3.1) from ¢y to ¢, we obtain the HCIE

(3.2) on J.

By definition, ¢ —
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Conversely, assume that x satisfies the HCIE (3.2). Then by direct differen-
tiation we obtain the first equation in (3.1). Again, substituting ¢ = to in (3.2)
yields

J}(to) — k‘(to,x(to)) o Tro — /{i(to, 3;‘0)

f(to,z(to)) ~ [(to,x0)
. . r—k(t,z) . . o

Since the mapping © — —————= is increasing in R almost everywhere for ¢t € J,

i f(t,z)
— k(to,z) . . . . .

the mapping = — JSf(t(o)ﬂU) is injective in R, whence x(tg) = x¢. Hence the proof
0,T

of the lemma is complete. O

Now we are in a position to prove the following existence theorem for HCDE
(1.2).

Theorem 3.2. Assume that the hypotheses (Ag)-(A2) hold. Further, if

xo — k(to, o) ’
_ h L 1
ooy |+ 1Mt 0 <

then the HCDE (1.2) has a solution defined on J.
Proof. Set E = C(J,R) and define a subset S of E defined by

(3.3) L (\

(3.4) S={zeE | ||lz]| <N}
where,
F ‘w’JthHLI + K,
N — f(to, zo)
xo — k(to, o) ’
1-L _— 1] =L
1 (‘ f(tO;(EO) ‘ + ||h||L ) 2

and

Fy =sup|f(¢t,0)] and Ko =sup |k(t,0)].
teJ teJ

Clearly S is a closed, convex and bounded subset of the Banach algebra E. Now,
using the hypotheses (Ag) and (As) it can be shown by an application of Lemma
3.1 that the HCDE (1.2) is equivalent to the nonlinear HCIE

fo - M) [ Quy(s)ds

(35)  a(t) =k(t,2(t) + [f(t, z(t))] (M : )

for t € J.
Define three operators A,C : E — FE and B: S — E by

(3.6) Ax(t) = f(t,z(¢)), t € J,
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_ o — k(to,:l?o) ¢ 2)(s) ds
(3.7) Ba(t) = o) +/tO(Q )(s)ds, t € J,
and
(3.8) Cx(t) = k(t, z(t)), t € J.

Then, the HCIE (3.5) is transformed into an operator equation as
(3.9) Az(t) Bx(t) + Cx(t) = z(t), t € J.

We shall show that the operators A, B and C satisfy all the conditions of
Theorem 3.1.

First, we show that A is a Lipschitz operator on E with the Lipschitz constant
L;. Let 2,y € E. Then, by hypothesis (A1),

[Az(t) — Ay()| = |f(t, 2(t)) = f(t,y(@)] < Lilz(t) — y(t)] < Lallz -y
for all ¢ € J. Taking supremum over t, we obtain
Az — Ay|| < Lalz —y||

for all x,y € E. This shows that A is a Lipschitz operator on F with the Lipschitz
constant L. Similarly, it can be shown that C' is also a Lipschitz operator on E
with the Lipschitz constant L.

Next, we show that B is a compact and continuous operator on S into E. First
we show that B is continuous on S. Let {z,} be a sequence in S converging to a
point « € S. Then by dominated convergence theorem for integration, we obtain

lim Bz, (t) = lim (xo_’“(to’on /t t(Q;vn)(s)ds)

n— 00 n— 00 f(t07 3;‘0)
— k(t ¢

_x0 — k(to, z0) + lim
f(thxO) =0 Jt,

(Qzn)(s) ds

— 2o — k(to, o) + /tt [ lim (Qa:n)(s)} ds

f(to, xo) n—o0

== f_(tlz(ii)of oy /t (Q)(s) ds

= Bx(t)

for all ¢ € J. Moreover, it can be shown as below that {Bx,} is an equicontinuous
sequence of functions in X. Now, following the arguments similar to that given in
Granas et al. [2], it is proved that B is a a continuous operator on S.
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Next, we show that B is compact operator on S. It is enough to show that
B(S) is a uniformly bounded and equi-continuous set in E. Let z € S be arbitrary.
Then by hypothesis (As),

Zo — k(t071'0) t
" Flow) |, @0 ds

o — k(to,l’o) t
7f(t0,xo) +/t0 h(s)ds

o — k(to, {L‘())
f(to, o)

|B(t)| <

IN

IN

+ 1Al

for all ¢t € J. Taking supremum over ¢,

xo — k(to, zo)
o < [0 Ktz
IBal < |2 0o

for all x € S. This shows that B is uniformly bounded on S.

Again, let t1,to € J. Then for any z € S, one has

Ba(ty) — Ba(ty)| = /1(Qx)(s) ds—/g(Qx)(s) ds

to to

<

/ " (@) ()] ds

< Ip(t1) — p(t2)|

t

where p(t) = / h(s)ds. Since the function p is continuous on compact J, it is
to
uniformly continuous. Hence, for € > 0, there exists a § > 0 such that

‘tl — t2| <= |B$(t1) — Bx(t2)| <€

for all t1,t2 € J and for all € S. This shows that B(S) is an equi-continuous set
in E. Now the set B(S) is uniformly bounded and equicontinuous set in E, so it
is compact by Arzeld-Ascoli theorem. As a result, B is a continuous and compact
operator on S.

Next, we show that hypothesis (¢) of Theorem 3.1 is satisfied. Let z € E and
y € S be arbitrary such that x = Ax By + Cz. Then, by assumption (A;), we have

z(8)] < [Az(t)| By ()| + |C(t)]

<|sttao]

xo — k(to, o)

F(to, m0) +/t:(Qy)(8) ds> ‘ + [k(t, (1))
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< o) - 1001+ 1500 | (|22 4 [@uoas)|

f(to, o)
+ |k(t, z(t)) — k(t,0)| + |k(t, 0)]

E(to,
< [Lafx(t)| + Fo (‘xo fto a(c]omo / e )

+L2|x(t)|+K0
xo—k‘to,xo
F ‘7‘ hl| 1 K
0( f(to, o) * HL)+ ’
kto,xo

) (oo MO R

Taking supremum over t,

xo — k(to, x
Fy (‘of(tooo‘_’_'h”Ll) + Ko
< ! = N.
=] < 2o — k(to. 7o
= ([ ) = 2

This shows that hypothesis (c) of Theorem 3.1 is satisfied. Finally, we have

To — (to, SUO

= |B(S)l| = sup{||Ba -z € 5} < | = [+ 1l

and so,
‘ To — k(to, .Z‘O
f(t()’ O
Thus, all the conditions of Theorem 3.1 are satisfied and hence the operator equation

Az Bx + Cx = x has a solution in S. As a result, the HCDE (1.2) has a solution
defined on J. This completes the proof. m]

LlM—i-LQSLl( ’+|h||L1)+L2<1

4. Existence of Maximal and Minimal Solutions

In this section, we shall prove the existence of maximal and minimal solutions
for the HCDE (1.2) on J = [tg,to + a]. We need the following definition in what
follows.

Definition 4.1. A solution r of the HCDE (1.2) is said to be maximal if for any
other solution z to the HCDE (1.2) one has z(t) < r(t) for all ¢ € J. Again, a
solution p of the HCDE (1.2) is said to be minimal if p(t) < z(t) for all ¢ € J, where
x is any solution of the HCDE (1.2) existing on J.

We discuss the case of maximal solution only, as the case of minimal solution
is similar and can be obtained with the similar arguments with appropriate modifi-
cations. Given an arbitrary small real number ¢ > 0, consider the following initial
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value problem of HCDE,

LN EORLICRIGN I
(4.1) dt { 7(t,z(t) } < (Qu)(t) +e te
z(to) = mo+e,

where, f € C(J x R,R\ {0}), k € C(J x R,R) and the operator Q : E — E is
continuous.

An existence theorem for the HCDE (4.1) can be stated as follows:

Theorem 4.1. Assume that the hypotheses (Ag)-(Az2) hold. Suppose also that the
inequality (8.3) holds. Then for every small number ¢ > 0, the HCDE (4.1) has a
solution defined on J.

Proof. By hypothesis, since

To — k(t(),wo) ‘
P 1
b ([P g ) + 22 <1

there exists an ¢y > 0 such that

xo + € — k(to, zo + €)
4.2 I ’ , o
) 1< flto, o +¢€) + Ikl +€ea | + Lo
for all 0 < € < €p. Now the rest of the proof is similar to Theorem 3.2. 0

Our main existence theorem for maximal solution for the HCDE (1.2) is

Theorem 4.2. Assume that the hypotheses (Ag)-(As) hold. Further, if the condi-
tion (3.3) holds, then the HCDE (1.2) has a mazimal solution defined on J.

Proof. Let { en}go be a decreasing sequence of positive real numbers such that
lim ¢, = 0, where ¢ is a positive real number satisfying the inequality

n—oo

To + €9 — k(to,xo + €
(4.3) I (‘ 0 0 (to, o 0)

+ ||h]lr + €0a | + Lo < 1.
f(t07l'()+60) || ||L1 0 ) 2

The number € exists in view of the inequality (3.3). Then for any solution u of the
HCDE (1.2), by Theorem 2.1, one has

(4.4) u(t) < r(t, en)
for all t € J and n € NU {0}, where r(t,€,) is a solution of the HCDE,

(4.5) dt F(t,z(1) = (Qx)(t) +en, te

xz(to) = xo+e, €R,
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defined on J.
Since, by Theorems 3.1 and 3.2, {r(¢,€,)} is a decreasing sequence of positive
real numbers, the limit

(4.6)

r(t) = Um r(t,e,)

n— o0

exists. We show that the convergence in (4.6) is uniform on J. To finish, it is enough
to prove that the sequence {r(¢,€,)} is equi-continuous in C(J,R). Let t1,t3 € J
be arbitrary. Then,

|T(t17 En) - T(tg, En)l

= |k’(t1,7’(t1, Gn)) — k(tg,?"(tz, En))’

+‘[f(t1,r(t1,en))] (w+/tl(QT)(&Gn)ds—i—/tlgnds)

f(to, w0 + €n) to to
o -+ €En t2 t2
— [f(t2, r(t2, €0))] (m + /m (Qr)(s,€n)ds + /to €n ds)

< [k(t1, (1 en)) = k(tz, r(t2,€0)]

+ \ [ttt en)] (st + (@) (s.cn)ds + / e ds)

flto,zo+€n) iy to
— [f(t2,7(t2, €0))] (% + /t 1(Qr)(s,en)ds —&—/t 1 €n ds)
To + €n t t2
+ ‘ [f(t% T(tQ; En))] (m + /to (QT)(S, én) ds + AO €n dS)
- [fttarr(t )] (e ey / (Qr)(s,en) ds + / e ds)

< |k(t1,r(t, €n)) — k(t2,r(t2, €0))]
+ [ [t r(ts€n)) = flt,m(t2, €0))] (

‘ To + €n
f(to, zo + €n)

+ 1Bl + €ncr)

(47) + F Hp(tl) — p(t2)| + |t1 - t2|€n]
¢
where, F' = sup |f(t,2)| and p(t) = / h(s)ds.
(t,z)eJx[—N,N] to

Since f and k are continuous on compact set J x [—N, N|, they are uniformly
continuous there. Hence,

|f(t1,7’(t1, En)) - f(tg,?"(tg, Gn))| - 0 as tl - t2
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and
|k(t1,7(t1,€n)) — k(ta, r(t2,€0))| = 0 as 11 — ta

uniformly for all n € N. Similarly, since the function p is continuous on compact
set J, it is uniformly continuous and hence

‘p(tl) —p(tg)} —0 as t; —to
uniformly for ¢1,ts € J.
Therefore, from the above inequality (4.7), it follows that
|r(t1,€n) —r(t1,€n)| = 0 as t; — iy
uniformly for all n € N. Therefore,
r(t,en) = r(t) as n— oo

for all ¢t € J. Next, we show that the function r(¢) is a solution of the HCDE (3.1)
defined on J. Now, since r(t, €,) is a solution of the HCDE (4.5), we have

gy 7= Uerta] (s s @ aiss [ o)

to to
§htr(ten)

for all ¢ € J. Taking the limit as n — oo in the above equation (4.8) yields

r(0) = k(e + [£(er )] (72 [ (@nis)as)

for t € J. Thus, the function r is a solution of the HCDE (1.2) on J. Finally, form
the inequality (4.4) it follows that

u(t) < r(t)

for all t € J. Hence the HCDE (1.2) has a maximal solution on J. This completes
the proof. O

5. Comparison Theorems

The main problem of the differential inequalities is to estimate a bound for the
solution set for the differential inequality related to the HCDE (1.2). In this section
we prove that the maximal and minimal solutions serve the bounds for the solutions
of the related differential inequality to HCDE (1.2) on J = [to, %o + a.

Theorem 5.1. Assume that the hypotheses (Ag)-(Az) hold. Suppose that the con-
dition (3.3) holds. Further, if there ezists a function u € C(J,R) such that

d [U(t) - k(t,u(t))]
(5.1) dt [ f(t u(t))
U(to)

< (Qu)(t), teld,

IN

Zo,
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then,
(5.2) u(t) <r(t)

for all t € J, where r is a mazimal solution of the HCDE (1.2) on J.
Proof. Let € > 0 be arbitrary small. Then, by Theorem 4.3, r(¢,€) is a maximal
solution of the HCDE (4.1) and that the limit

(5.3) r(t) = lim r(¢, €)

e—0

is uniform on J and the function r is a maximal solution of the HCDE (1.2) on J.
Hence, we obtain

d [r(t,e) — k(t,r(t,e))}
(5.4) dt ft,r(t,e))

r(to,€) = mo+e

(Qr)(t,e) +e ted

From above inequality it follows that

d {r(t, €) — k(t,r(t,€))
(5.5) dt f(t,r(t€)
’I"(to,ﬁ) > xop.

} > (Qr)(te), teJ,

Now we apply Theorem 2.1 to the inequalities (5.1) and (5.5) and conclude that
(5.6) u(t) < r(t,e)

for all ¢ € J. This further in view of limit (5.3) implies that inequality (5.2) holds
on J. This completes the proof. O

Theorem 5.2. Assume that the hypotheses (Ag)-(Az) hold. Suppose that the con-
dition (3.8) holds. Further, if there exists a function v € C(J,R) such that

d [v(t)—k(t,v(t))} @), ted

(5.7) at | f(to(t) -
v(to) > o,

then,

(5:8) o(t) < u(t)

for allt € J, where p is a minimal solution of the HCDE (1.2) on J.

Note that Theorem 5.1 is useful to prove the boundedness and uniqueness of
the solutions for the HCDE (1.2) on J. A result in this direction is
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Theorem 5.3. Assume that the hypotheses (Ao)-(A2) hold and let the condition
(3.3) be satisfied. Suppose that there exists a function G : J x Ry — Ry such that

[(Q1)(t) — (Q2)(1)]
(5.9) (
<G [t max

s€[to,t]

f(s,21(s)) (s, 22(s))

forallt € J and x1,z2 € E. If identically zero function is the only solution of the
differential equation

21(s) = k(s,21(s)) _ w2(s) = (s, 22(s)) D

(5.10) m/(t) = G(t,m(t)), t € J, m(ty) =0,

then the HCDE (1.2) has a unique solution on J.

Proof. By Theorem 3.2, the HCDE (1.2) has a solution defined on J. Suppose
that there are two solutions u; and ug of the HCDE (1.2) existing on J. Define a
function m : J — R4 by

(5.11) m(t) = Flt,ui(t)) J(t,ua(t))

ui(t) = k(t, wa (1) ua(t) = k(4 ua(t)) ‘ .

As (|z(t)]) < |2'(t)] for t € J, we have that

dt

sl () — k()] d [us(t) — bt us(t))
m(t) < dt{ @) ] { it ua () H
< 1(Qa1)(®) — (Qu2)(®)

S G (t7 ul(t) — k(t, u1(t)) ’U,Q(t) — k(t7u2(t)) ’)

= G(t,m(t))

f(tvul(t)) f(t7u2(t))

for all t € J; and that m(ty) = 0.
Now, we apply Theorem 6.1 to get that m(¢) = 0 for all ¢ € J. This gives

’U,l(t) — k;(t,ul(t)) - ’U,g(t) — k;(t,u2(t))

f(ta Uy (t)) B f(ta U2 (t))
for all ¢ € J. Finally, in view of hypothesis (Ag) we conclude that u;(t) = u2 () on
J. This completes the proof. O

6. Existence of Extremal Solutions in a Vector Segment

Sometimes it is desirable to have knowledge of existence of extremal solutions
for the HCDE (1.2) in a vector segment defined on J. Therefore, in this section we
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shall prove the existence of maximal and minimal solutions for HCDE (1.2) between
the given upper and lower solutions on J = [tg,to + a]. We use a hybrid fixed point
theorem of Dhage [7] in ordered Banach algebras for establishing our results. We
need the following preliminaries in the sequel.

A non-empty closed set K in a Banach algebra E is called a cone with vertex
0,if i) K+ K CK, (ii) \K C K for A€ R, A >0 and (iii) {-K} N K = 0, where
0 is the zero element of E. A cone K is called to be positive if (iv) K o K C K,
where 70" is a multiplication composition in E. We introduce an order relation <
in E as follows. Let z,y € E. Then x < y if and only if y — 2 € K. A cone K is
called to be normal if the norm || - || is semi-monotone increasing on K, that is,
there is a constant N > 0 such that ||z]|| < N|y|| for all z,y € K with x < y. It
is known that if the cone K is normal in F, then every order-bounded set in E is
norm-bounded. The details of cones and their properties appear in Heikkild and

Lakshmikantham [12].

Lemma 6.1. Let K be a positive cone in a real Banach algebra E and let
u1, U, V1,v2 € K be such that u; < v1 and us < va. Then ujus < v1vs.

For any a,b € E,a < b, the order interval [a, b] is a set in E given by
[a,b) ={x € E:a <z <b}.
Definition 6.1. A mapping T : [a,b] — FE is said to be nondecreasing or mono-
tone increasing if <y implies Tax < Ty for all z,y € [a, b].

We use the following fixed point theorems of Dhage [8] for proving the existence
of extremal solutions for the HCDE (1.2) under certain monotonicity conditions.

Theorem 6.1.(Dhage [8]) Let K be a cone in a Banach algebra E and let a,b € E.
Suppose that A, B : [a,b] — K and C : [a,b] — E are three nondecreasing operators
such that

(a) A and C are Lipschitz with the Lipschitz constant «, and 3 respectively,
(b) B is completely continuous, and
(¢) Az Bx + Cx € [a,b] for each x € [a,b].

Further, if the cone K is positive and normal, then the operator equation Az Bx +
Cxz = x has a least and a greatest solution in [a,b], whenever aM + 3 < 1, where
M = || B([a, b])|| := sup{||Bz|| : = € [a, ]}

We equip the space C(J,R) with the order relation < with the help of the cone
K in it defined by

(5.1) K={zxeC(J,R):z(t) >0 forall t € J}.

It is well known that the cone K is positive and normal in C'(J,R). We need the
following definitions in the sequel.
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Definition 6.2. A function ¢ € C(J,R) is called a lower solution of the HCDE
(1.2) defined on J if it satisfies

d {a(t) — k(t,a(t))}
dt ft,a(t))
a(to)

(Qa)(t), t € J,

IN

ZXg.

Similarly, a function b € C(J,R) is called an upper solution of the HCDE (1.2)
defined on J if it satisfies

d [b(t) — k(t,b(¢))
| > (Qb)(4), tE
iy ) > @0
b(to) = xo.

A solution to the HCDE (1.2) is a lower as well as an upper solution for the HCDE
(1.2) defined on J and vice versa.

We consider the following set of assumptions:
(B1) f:JxR—-R"—{0},g9:J xR—R.
(B2) The HCDE (1.2) has a lower solution a and an upper solution b defined on J

with a < b.

—k(t
i GXD) is increasing in the interval [ min a(t), max b(t)]
f(t,z) teJ ted

almost everywhere for ¢t € J.

(Bs) The function  —

(B4) The functions f(¢,z) and k(t,z) are nondecreasing in = almost everywhere
fort € J.

(Bs) The causal operator ) is nondecreasing on F.

(Bg) There exists a function k € L'(J,R,) such that

(Qb)(t) < k(t)
for all t € J.
Theorem 6.2. Suppose that the assumptions (A1) and (By) through (Bs) hold.
Further, if

o — k’(to,l‘o)

f(to, zo)

then the HCDE (1.2) has a minimal and a mazimal solution in [a,b] defined on J.

Proof. Now, the HCDE (1.2) is equivalent to hybrid integral equation (3.5) defined
on J. Let E = C(J,R). Define three operators A, B and C on [a,b] by (3.6),
(3.7) and (3.8) respectively. Then the integral equation (3.5) is transformed into an

(52) L1 ( + |]€||L1) + L2 < 1,
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operator equation as Az(t) Bx(t) + Cx(t) = z(t) in the ordered Banach algebra E.
Notice that hypothesis (B;) implies 4, B : [a,b] — K and C' : [a,b] — E. Since the
cone K in F is normal, [a,b] is a norm-bounded set in E. Now it is shown, as in the
proof of Theorem 3.2, that the operators A and C are Lipschitz with the Lipschitz
constant L; and Lo. Similarly, B is completely continuous operator on [a,b] into
E. Again, the hypothesis (By) implies that A, B and C' are nondecreasing on [a, b].
To see this, let x,y € [a,b] be such that 2 < y. Then, by hypothesis (By),

Ax(t) = f(t,=(t) < f(t,y(t) = Ay(t)
for all ¢ € J. Similarly, we have
Cx(t) = k(t, z(t)) < k(t,y(t)) = Cy(t)

for all t € J. Again,
(%o — k(to, $0) t
Bzx(t) = (f(t073€0) —i—/to(Qx)(s) ds)

(27t P
= By(t)

for all t € J. So A, B and C' are nondecreasing operators on [a, b]. Again, Lemma
6.1 and hypothesis (B4) together imply that

alt) < kit a(0) + [t at)] (720 [ (Qay(s) s
< hltalo) + (1t )] () 4 [ Qo) as)
< k(e 0) + 700 b)) (P00 (s as)

< b(t),

for all t € J and x € [a,b]. As a result a(t) < Az(t)Bz(t) + Cx(t) < b(t) for all
t € J and x € [a,b]. Hence, Az Bz + Cx € [a,b] for all z € [a,b]. Again,

xo — k(to, zo)

M = |1B([a, b)I| = sup{||Bz] : x € [a.b]} < | =7

all 10

and so,

xo — k(to, o)
f(to, o)

Now, we apply Theorem 6.1 to the operator equation Ax Bx + Cx = x to yield that

the HCDE (1.2) has a minimal and a maximal solution in [a,b] defined on J. This
completes the proof. m]

L1M+L2§L1<

+ ||k||L1> + Lo < 1.
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