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Abstract. In this paper, we study the existence and uniqueness of fixed points for gen-

eralized weak contractions under some proper assumptions. Our theorems include the

known results of [1]-[6].

1. Introduction

Let (X, d) be a metric space and T be a self-map of X. T is said to be contrac-
tion if there exists a constant α ∈ (0, 1) such that

(1.1) d(Tx, Ty) ≤ α · d(x, y)

for all x, y ∈ X. T is called φ-weak contraction if

(1.2) d(Tx, Ty) ≤ d(x, y)− φ(d(x, y))

for all x, y ∈ X, where φ : [0,+∞) → [0,+∞) is a continuous and nondecreasing
function with φ(t) = 0 iff t = 0.

The weak contraction was introduced by Alber and Guerre-Delabriere [1] in
1997, who established a fixed point theorem for such map in Hilbert spaces. Later,
Rhoades [2], in 2001, extended the result of [1] to complete metric spaces. The
result is as follows.

Theorem 1.1. Let (X, d) be a complete metric space, and let T be a φ-weak
contraction on X, then T has a unique fixed point.
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However, Boyd and Wong [3], as early as 1969, introduced the notion of Φ-
contraction, i.e., there exists an upper semi-continuous function Φ : [0,+∞) →
[0,+∞) such that

(1.3) d(Tx, Ty) ≤ Φ(d(x, y)

for all x, y ∈ X. Further, they also showed that if Φ(t) < t for all t > 0 and
Φ(0) = 0, then T has a unique fixed point u, and Tnx→ u for each x ∈ X. In fact,
it is easy to find from (1.2)

(1.4) d(Tx, Ty) ≤ (I − φ)(d(x, y)),

where I is identity map. Denote Φ = I − φ, then

(1.5) d(Tx, Ty) ≤ Φ(d(x, y)),

here Φ is continuous. But Φ of (1.3) is upper semi-continuous. Therefore Φ-
contraction is weaker than φ-weak contraction above.

In 2008, Dutta and Choudhury [4] gave the following the existence theorem of
fixed points for φ-weak contractions.

Theorem 1.2.([4, Theorem 2.1]) Let (X, d) be a complete metric space and let
T : X → X be a self-mapping satisfying the inequality:

(1.6) ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)), x, y ∈ X,

where ψ,φ : [0,+∞) → [0,+∞) are both continuous and monotone nondecreasing
functions with ψ(t) = φ(t) = 0 if and only if t = 0. Then T has a unique fixed
point.

In 2009, Dorić [6] generalized above Theorem 1.2 as follows.

Theorem 1.3.([6, Theorem 2.2]) Let (X, d) be a complete metric space and let
T : X → X be a self-mapping satisfying the inequality

(1.7) ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)), x, y ∈ X

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]}, ψ :
[0,+∞) → [0,+∞) is continuous monotone nondecreasing function with ψ(t) = 0
if and only if t = 0, φ : [0,+∞) → [0,+∞) is a lower semi-continuous function
with φ(t) = 0 if and only if t = 0. Then T has unique fixed point.

If one takes ψ(t) = t for t ∈ [0,+∞) in Theorem 1.3, then it reduces to Corollary
2.2 of Zhang et al.[5].

Remark 1.4. For (1.6) and (1.7), we can write them again in the following

(1.8) ψ(d(Tx, Ty)) ≤ (ψ − φ)(d(x, y)) = Φ(d(x, y)), x, y ∈ X,
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and

(1.9) ψ(d(Tx, Ty)) ≤ (ψ − φ)(M(x, y)) = Φ(M(x, y)), x, y ∈ X,

respectively.

Inspired and motivated by these facts, we establish more general definitions as
follows.

Definition 1.5. T is said to be (ψ,φ)-weak contraction if there exist ψ,φ :
[0,+∞) → [0,+∞) with ψ(0) = φ(0) = 0 and ψ(t), φ(t) > 0 for all t > 0 such
that

(1.10) ψ(d(Tx, Ty)) ≤ φ(d(x, y)), x, y ∈ X.

Definition 1.6. T is said to be generalized (ψ,φ)-weak contraction if there exist
ψ,φ : [0,+∞) → [0,+∞) with ψ(0) = φ(0) = 0 and ψ(t), φ(t) > 0 for all t > 0 such
that

(1.11) ψ(d(Tx, Ty)) ≤ φ(M(x, y)), x, y ∈ X,

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]}.
The main aim of this paper is to study the existence and uniqueness of fixed

points for generalized (ψ,φ)-weak contractions in complete metric spaces.

2. Main Results

Theorem 2.1. Let T : X → X be a generalized (ψ,φ)-weak contraction with
ψ(t) > φ(t) and limτ→t inf ψ(τ) > limτ→t supφ(τ) for all t > 0. Then T has a
unique fixed point.

Proof. Let x0 ∈ X be arbitrary and let {xn}∞n=0 be the Picard iteration defined by
xn+1 = Txn. Without loss of generality, we assume that xn+1 ̸= xn for all n ≥ 0.
Then it follows from (1.9) with x := xn, y := xn−1 that

(2.1)
ψ(d(xn+1, xn)) = ψ(d(Txn, Txn−1))

≤ φ(M(xn, xn−1)),

where

(2.2)
M(xn, xn−1) = max{d(xn, xn−1), d(xn+1, xn),

1
2d(xn+1, xn−1)}

= max{d(xn, xn−1), d(xn+1, xn)}.

If d(xn+1, xn) > d(xn, xn−1) for some n, we get from (2.1) and (2.2)

(2.3) 0 < ψ(d(xn+1, xn)) ≤ φ(d(xn+1, xn)),

which is a contradiction and so d(xn+1, xn) ≤ d(xn, xn−1) for each n ≥ 1. Thus
there exists r ≥ 0 such that

(2.4) limn→∞ d(xn+1, xn) = r.
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And we also obtain from (2.1) that

(2.5) ψ(d(xn+1, xn)) ≤ φ(d(xn, xn−1)),

which implies that

(2.6)
infi≥n ψ(d(xi+1, xi)) ≤ ψ(d(xn+1, xn))

≤ φ(d(xn, xn−1)) ≤ supj≥n φ(d(xj , xj−1)).

If r > 0, then letting n→ ∞ in the inequality (2.6) we get

(2.7) limn→∞ infi≥n ψ(d(xi+1, xi)) ≤ limn→∞ supj≥n φ(d(xj , xj−1)),

that means, limτ→r inf ψ(τ) ≤ limτ→r supφ(τ), which implies that r = 0, contra-
dicting our assumption. So r = 0, i.e., limn→∞ d(xn+1, xn) = 0.

Next we prove that {xn} is a Cauchy sequence. If it is not true, there exist
ϵ > 0 and subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) is the smallest
index for which n(k) > m(k) > k and d(xm(k), xn(k)) ≥ ϵ. This implies that
d(xm(k), xn(k)−1) < ϵ for all k ≥ 1. By the triangle inequality, we obtain that

(2.8)
ϵ ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

≤ ϵ+ d(xn(k)−1, xn(k)).

Letting k → ∞ in (2.8) we have

(2.9) limk→∞ d(xm(k), xn(k)) = ϵ.

Since

d(xm(k), xn(k))− d(xn(k)−1, xn(k)) ≤ d(xm(k), xn(k)−1) < ϵ,

then

(2.10) limk→∞ d(xm(k), xn(k)−1) = ϵ.

Similarly, we also obtain that

(2.11) limk→∞ d(xm(k)−1, xn(k)−1) = ϵ.

Again using Definition 1.2, then

(2.12)
ψ(d(xm(k), xn(k)))
= ψ(d(Txm(k)−1, Txn(k)−1))
≤ φ(M(xm(k)−1, xn(k)−1)),

which deduces

(2.13) infi≥k ψ(d(xm(i), xn(i))) ≤ supj≥k φ(M(xm(j)−1, xn(j)−1)),
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where

(2.14)

M(xm(k)−1, xn(k)−1)
= max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k)),
1
2 [d(xm(k)−1, xn(k)) + d(xm(k), xn(k)−1)]}
≤ max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k)),
1
2 [2d(xm(k)−1, xn(k)−1) + d(xn(k)−1, xn(k)) + d(xm(k), xm(k)−1)]}
≤ d(xm(k)−1, xn(k)−1) + d(xm(k)−1, xm(k)) + d(xn(k)−1, xn(k)).

It implies that

(2.15)
d(xm(k)−1, xn(k)−1) ≤M(xm(k)−1, xn(k)−1)
≤ d(xm(k)−1, xn(k)−1) + d(xm(k)−1, xm(k)) + d(xn(k)−1, xn(k)).

Letting k → ∞ in (2.15), we have

(2.16) limk→∞M(xn(k)−1, xm(k)−1) = ϵ.

Taking the limit as k → ∞ in (2.13), we have

limk→∞ infi≥k ψ(d(xm(i), xn(i))) ≤ limk→∞ supj≥k φ(M(xm(j)−1, xn(j)−1)),

which contradicts with the condition of Theorem 2.1 and therefore {xn} is a Cauchy
sequence and hence it is convergent. Let limn→∞ xn = q.

Finally we show that q is unique fixed point of T . If q ̸= Tq, then d(q, T q) > 0.
By taking x = q, y = xn in (1.9), we obtain

(2.17)
ψ(d(Tq, xn+1)) = ψ(d(Tq, Txn))

≤ φ(M(q, xn)),

which implies that

(2.18) infi≥n ψ(d(Tq, xi+1)) ≤ supj≥n φ(M(q, xj)),

where

(2.19)

M(q, xn) = max{d(q, xn), d(q, T q), d(xn+1, xn),
1
2 [d(q, xn+1) + d(xn, T q)]}

≤ max{d(q, xn), d(q, T q), d(xn+1, xn),
1
2 [2d(q, xn) + d(xn, xn+1) + d(q, T q)]}

≤ d(q, xn) + d(xn, xn+1) + d(q, T q)]}.

Since

(2.20) d(q, T q) ≤M(q, xn) ≤ d(q, xn) + d(xn, xn+1) + d(q, T q),

then we have
M(q, xn) → d(q, T q)
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as n→ ∞. It follows from (2.18) that

(2.21) limn→∞ infi≥n ψ(d(Tq, xi+1)) ≤ limn→∞ supj≥n φ(M(q, xj)),

which is a contradiction and so q = Tq. For uniqueness of fixed point of T . If
otherwise, there exists p ∈ X for Tp = p ̸= q = Tq. Observe that

0 <ψ(d(q, p))

=ψ(d(Tq, Tp))

≤φ(M(q, p))

=φ(max{d(q, p), 1
2
[d(q, Tp) + d(Tq, p)]})

=φ(d(q, p)),

which is a contradiction. Hence p = q. 2

Remark 2.2. Theorem 2.1 extends and improves Theorem 2.2 of [6] in the following
sense.

1. It is unnecessary that the functions ψ and φ are continuous monotone non-
decreasing and lower semi-continuous, respectively.

2. The condition of functions ψ and φ is weaked to

lim
τ→t

inf ψ(τ) > lim
τ→t

supφ(τ)

for all t > 0. That is, functions ψ and φ neither is continuous or lower semi-
continuous nor monotone nondecreasing.

Corollary 2.3. Let T : X → X be a generalized (ψ,φ)-weak contraction. Where (a)
φ is an upper semi-continuous function; (b) ψ is a lower semi-continuous function;
(c) ψ(t) > φ(t) for all t > 0. Then T has a unique fixed point.

Proof. By (a), (b) and (c), we have

(2.22) limτ→t inf ψ(τ) > limτ→t supφ(τ)

for all t > 0. If (2.22) does not hold, then there exists some t0 > 0 such that

(2.23) limτ→t0 inf ψ(τ) ≤ limτ→t0 supφ(τ).

Using (a) and (b), we have

(2.24) ψ(t0) ≤ limτ→t0 inf ψ(τ) ≤ limτ→t0 supφ(τ) ≤ φ(t0),

which contradicts with (c). In the view of Theorem 2.1, we obtain the conclusion
of Corollary 2.3. 2

Remark 2.4. In Corollary 2.3, the condition of function ψ is weaked to upper
semi-continuous from the corresponding condition of Theorem 2.2 of [6].
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