참고문헌
- Aydiner A, Yildiz I, Seyidova A (2013). Clinical outcomes and prognostic factors associated with the response to erlotinib in non-small-cell lung cancer patients with unknown EGFR mutational status. Asian Pac J Cancer Prev, 14, 3255-61. https://doi.org/10.7314/APJCP.2013.14.5.3255
- Barghi L, Aghanejad A, Valizadeh H, et al (2012). Modified synthesis of erlotinib hydrochloride. Adv Pharm Bull, 2, 119-22.
-
Bogdanov B, Vidts A, Van Den Buicke A, et al (1998). Synthesis and thermal properties of poly(ethylene glycol)-poly(I
${\mu}$ -caprolactone) copolymers. Polymer, 39, 1631-6. https://doi.org/10.1016/S0032-3861(97)00444-8 - Bolandnazar S, Divsalar A, Valizadeh H, et al (2013). Development and Application of an HPLC Method for Erlotinib Protein Binding Studies. Adv Pharm Bull, 19, 22.
- Clay D, Lipman YM, Bonk ME (2005). Erlotinib (Tarceva(R)): A brief overview, P and T, 30, 561-602.
- Dubey N, Varshney R, Shukla J, et al (2012). Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv, 19, 132-42. https://doi.org/10.3109/10717544.2012.657718
- Fonseca C, Simoes S, Gaspar R (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Controlled Release, 83, 273-86. https://doi.org/10.1016/S0168-3659(02)00212-2
- Freiberg S, Zhu XX (2004). Polymer microspheres for controlled drug release. Int J Pharmaceutics, 282, 1-18. https://doi.org/10.1016/j.ijpharm.2004.04.013
- Gale DM (2003). Molecular targets in cancer therapy. Seminars Oncol Nurs, 19, 193-205. https://doi.org/10.1016/S0749-2081(03)00047-0
- Galindo-Rodriguez S, Allemann E, Fessi H, et al (2004). Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res, 21, 1428-39. https://doi.org/10.1023/B:PHAM.0000036917.75634.be
-
Ge H, Hu Y, Jiang X, et al (2002). Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(
${\varepsilon}$ -caprolactone)-poly(ethylene oxide)-poly(${\varepsilon}$ -caprolactone) amphiphilic triblock copolymer micelles. J Pharmaceutical Sciences, 91, 1463-73. https://doi.org/10.1002/jps.10143 -
Ge H, Hu Y, Yang S, et al (2000). Preparation, characterization, and drug release behaviors of drug-loaded
${\varepsilon}$ -caprolactone/Llactide copolymer nanoparticles. J Appl Polymer Sci 75, 874-82. https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7<874::AID-APP3>3.0.CO;2-G -
Kim SY, Lee YM (2001). Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(
${\varepsilon}$ -caprolactone) as novel anticancer drug carriers. Biomaterials, 22, 1697-704. https://doi.org/10.1016/S0142-9612(00)00292-1 - Kingsley J, Dou H, Morehead J, et al (2006). Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. J Neuroimmune Pharmacol, 1, 340-50. https://doi.org/10.1007/s11481-006-9032-4
- Letchford K, Burt H (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur JPharmaceutics Biopharmaceutics, 65, 259-69. https://doi.org/10.1016/j.ejpb.2006.11.009
- Liu CB, Gong CY, Huang MJ, et al (2008). Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomedical Materials Res Part B: Applied Biomaterials, 84, 165-75.
- Lu Z, Bei J, Wang S (1999). A method for the preparation of polymeric nanocapsules without stabilizer. J Controlled Release, 61, 107-12. https://doi.org/10.1016/S0168-3659(99)00112-1
- Maeda H, Wu J, Sawa T, et al (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 65, 271-84. https://doi.org/10.1016/S0168-3659(99)00248-5
- Makrilia N, Lappa T, Xyla V, et al (2009). The role of angiogenesis in solid tumours: An overview. European Journal of Internal Medicine, 20, 663-71. https://doi.org/10.1016/j.ejim.2009.07.009
- Marslin G, Sheeba CJ, Kalaichelvan VK, et al (2009). Poly(D,Llactic-co-glycolic acid) nanoencapsulation reduces Erlotinibinduced subacute toxicity in rat. J Biomed Nanotechnol, 5, 464-71. https://doi.org/10.1166/jbn.2009.1075
- Merkli A, Tabatabay C, Gurny R, et al (1998). Biodegradable polymers for the controlled release of ocular drugs. Progress Polymer Science, 23, 563-80. https://doi.org/10.1016/S0079-6700(97)00048-8
- Molpeceres J, Guzman M, Aberturas MR, et al (1996). Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharmaceutical Sciences, 85, 206-13. https://doi.org/10.1021/js950164r
- Mondal N, Samanta A, Pal TK, et al (2008). Effect of different formulation variables on some particle characteristics of poly (DL-lactide-co-glycolide) nanoparticles. Yakugaku Zasshi, 128, 595-601. https://doi.org/10.1248/yakushi.128.595
- Nair LS, Laurencin CT (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762-98. https://doi.org/10.1016/j.progpolymsci.2007.05.017
-
Nguyen THA (2010). Formation of nanoparticles in aqueous solution from poly (
${\varepsilon}$ -caprolactone)-poly (ethylene glycol)-poly (${\varepsilon}$ --caprolactone). Adv Natural Sciences: Nanoscience Nanotechnology, 1, 025012. https://doi.org/10.1088/2043-6254/1/2/025012 - Okada M (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27, 87-133.
- Pereira Ade F, Pereira LG, Barbosa LA, et al (2013). Efficacy of methotrexate-loaded poly(epsilon-caprolactone) implants in Ehrlich solid tumor-bearing mice. Drug Deliv, 20, 168-79. https://doi.org/10.3109/10717544.2013.801052
- Pinto Reis C, Neufeld RJ, Ribeiro AnJ, et al (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology Medicine, 2, 8-21. https://doi.org/10.1016/j.nano.2005.12.003
- Qi WX, Shen Z, Lin F, et al (2012). Comparison of the efficacy and safety of EFGR tyrosine kinase inhibitor monotherapy with standard second-line chemotherapy in previously treated advanced non-small-cell lung cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev, 13, 5177-82. https://doi.org/10.7314/APJCP.2012.13.10.5177
- Quintanar-Guerrero D, Allemann E, Fessi H, et al (1998). Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm, 24, 1113-28. https://doi.org/10.3109/03639049809108571
-
Ranson M, Shaw H, Wolf J, et al (2010). A phase I doseescalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva
$^{(R)}$ , OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemotherapy Pharmacol, 66, 53-8. https://doi.org/10.1007/s00280-009-1133-3 -
Ryu J-G, Jeong Y-I, Kim I-S, et al (2000). Clonazepam release from core-shell type nanoparticles of poly(
${\varepsilon}$ -caprolactone)/ poly(ethylene glycol)/poly(${\varepsilon}$ --caprolactone) triblock copolymers. International J Pharmaceutics, 200, 231-42. https://doi.org/10.1016/S0378-5173(00)00392-6 -
Ryu JG, Jeong YI, Kim YH, et al (2001). Preparation of core-shell type nanoparticles of poly(
${\varepsilon}$ -caprolactone)/poly(ethylene glycol)/poly(${\varepsilon}$ -caprolactone) triblock copolymers. Bulletin of the Korean Chemical Society, 22, 467-75. - Sanchez A, Vila-Jato JL, Alonso MJ (1993). Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A. Int J Pharmaceutics, 99, 263-73. https://doi.org/10.1016/0378-5173(93)90369-Q
-
Shenoy DB, Amiji MM (2005). Poly(ethylene oxide)-modified poly(
${\varepsilon}$ -caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharmaceutics, 293, 261-70. https://doi.org/10.1016/j.ijpharm.2004.12.010 -
Sinha VR, Bansal K, Kaushik R, et al (2004). Poly-
${\varepsilon}$ -caprolactone microspheres and nanospheres: an overview. International J Pharmaceutics, 278, 1-23. https://doi.org/10.1016/j.ijpharm.2004.01.044 - Smith J (2005). Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clin Ther, 27, 1513-34. https://doi.org/10.1016/j.clinthera.2005.10.014
- Soppimath KS, Aminabhavi TM, Kulkarni AR, et al (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Controlled Release, 70, 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
- Torchilin VP (2007). Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J, 9, 128-47. https://doi.org/10.1208/aapsj0902015
- Vicent MJ, Duncan R (2006). Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol, 24, 39-47. https://doi.org/10.1016/j.tibtech.2005.11.006
- Vrignaud S, Hureaux J, Wack S, et al (2012). Design, optimization and in vitro evaluation of reverse micelleloaded lipid nanocarriers containing erlotinib hydrochloride. Int J Pharm, 436, 194-200. https://doi.org/10.1016/j.ijpharm.2012.06.026
-
Wei X, Gong C, Gou M, et al (2009). Biodegradable poly(
${\varepsilon}$ -caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharmaceutics, 381, 1-18. https://doi.org/10.1016/j.ijpharm.2009.07.033 - Woodruff MA, Hutmacher DW (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progr Polymer Science, 35, 1217-56. https://doi.org/10.1016/j.progpolymsci.2010.04.002
- Xu Y, Karmakar A, Heberlein WE, et al (2012). Multifunctional magnetic nanoparticles for synergistic enhancement of cancer treatment by combinatorial radio frequency thermolysis and drug delivery. Adv Healthc Mater, 1, 493-501. https://doi.org/10.1002/adhm.201200079
- Yadav D, Anwar MF, Garg V, et al (2014). Development of polymeric nanopaclitaxel and comparison with free paclitaxel for effects on cell proliferation of MCF-7 and B16F0 carcinoma cells. Asian Pac J Cancer Prev, 15, 2335-40. https://doi.org/10.7314/APJCP.2014.15.5.2335
- Yin HT, Zhang DG, Wu XL, et al (2013). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12. https://doi.org/10.7314/APJCP.2013.14.1.409
-
Zhang L, He Y, Ma G, et al (2011). Paclitaxel-loaded polymeric micelles based on poly(
${\varepsilon}$ -caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$ -caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine: Nanotechnology Biology Medicine, 8, 925-34.
피인용 문헌
- Overexpression of EGFR Protein in Bruneian Lung Cancer Patients vol.16, pp.1, 2015, https://doi.org/10.7314/APJCP.2015.16.1.233
- Inhibition of prostate cancer RM1 cell growth in vitro by hydroxyapatite nanoparticle-delivered short hairpin RNAs against Stat3 vol.16, pp.1, 2017, https://doi.org/10.3892/mmr.2017.6583
- Interaction of antitumoral drug erlotinib with biodegradable triblock copolymers: a molecular modeling study vol.72, pp.8, 2018, https://doi.org/10.1007/s11696-018-0413-y