DOI QR코드

DOI QR Code

Research Trends in Ion Exchange Membrane Processes and Practical Applications

이온교환막 공정 및 응용 연구동향

  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • Received : 2015.01.19
  • Published : 2015.02.10

Abstract

In this review, we summarized some of membrane processes using the ion exchange membrane typically used in energy applications. Ion exchange membranes are classified according to their functions, formations (e.g. heterogeneous, homogeneous), and polymer type. Furthermore, various methods to prepare cation exchange membranes and anion exchange membranes were discussed in detail and also illustrated through a thorough review of the literature works. There are numerous reports highlighting recent research trends in the ion exchange membrane fabrication, however, in this review we will focus more on discussing the development made in ion exchange membranes and their potential usages in future technologies.

본 리뷰에서는 에너지분야 응용을 위해 사용된 이온교환막을 이용한 분리막 공정에 대하여 정리하였다. 이온교환막은 기능, 균일상, 불균일상과 같은 형태, 사용된 고분자의 종류에 따라 구분되었으며, 양이온 및 음이온 교환막을 제조하기 위한 다양한 방법에 대하여 논문을 참조하여 정리하였다. 이온교환막을 제조하기 위한 최신 연구결과 동향이 보고되었으며, 본 리뷰에서는 분리막의 제조 및 발전되어온 내용과, 분리막을 미래지향적 기술에 사용하기 위한 잠재적 응용분야에 대하여 논의하였다.

Keywords

References

  1. S. B. Yun and Y. T. Lee, Effect of addition of cosolvent $\gamma$--butyrolactone on morphology of polysulfone hollow fiber membranes, Appl. Chem. Eng., 25, 274-280 (2014). https://doi.org/10.14478/ace.2014.1026
  2. S. M. Hosseini, S. S. Madaeni, A. R. Heidari, and A. Amirimehr, Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron-nickel oxide nanoparticles, Desalination, 284, 191-199 (2012). https://doi.org/10.1016/j.desal.2011.08.057
  3. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 119, 97-130 (2006). https://doi.org/10.1016/j.cis.2005.09.005
  4. K. K. Lee, T. H. Kim, T. S. Hwang, and Y. T. Hong, Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Application, Membr. J., 20, 278-289 (2010).
  5. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J. Membr. Sci., 325, 553-558 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
  6. V. Compan, E. Riande, F. J. Fernandez-Carretero, N. P. Berezina, and A. R. Sytcheva, Influence of polyaniline intercalations on the conductivity and permselectivity of perfluorinated cation-exchange membranes, J. Membr. Sci., 318, 255-263 (2008). https://doi.org/10.1016/j.memsci.2008.02.048
  7. A. G. Kannan, N. R. Choudhury, and N. K. Dutta, In situ modification of $Nafion^{(R)}$ membranes with phospho-silicate for improved water retention and proton conduction, J. Membr. Sci., 333, 50-58 (2009). https://doi.org/10.1016/j.memsci.2009.01.048
  8. C. Barth, M. C. Goncalves, A. T. N. Pires, J. Roeder, and B. A. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, J. Membr. Sci., 169, 287-299 (2000). https://doi.org/10.1016/S0376-7388(99)00344-0
  9. J. F. Blanco, Q. T. Nguyen, and P. Schaetzel, Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo, J. Membr. Sci., 186, 267-279 (2001). https://doi.org/10.1016/S0376-7388(01)00331-3
  10. B. Piluharto, V. Suendo, T. Ciptati, and C. L. Radiman, Strong correlation between membrane effective fixed charge and proton conductivity in the sulfonated polysulfone cation-exchange membranes, Ionics, 17, 229-238 (2011). https://doi.org/10.1007/s11581-011-0537-3
  11. C. Klaysom, B. P. Ladewig, G. Q. Lu, and L. Wang, Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes, J. Membr. Sci., 368, 48-53 (2011). https://doi.org/10.1016/j.memsci.2010.11.006
  12. S. Zhou, J. Kim, and D. Kim, Cross-linked poly (ether ether ketone) membranes with pendant sulfonic acid groups for fuel cell applications, J. Membr. Sci., 348, 319-325 (2010). https://doi.org/10.1016/j.memsci.2009.11.015
  13. W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, Poly (tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources, 208, 421-425 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
  14. Y. Zhang, J. Li, H. Zhang, S. Zhang, and X. Huang, Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications, Electrochim. Acta, 150, 114-121 (2014). https://doi.org/10.1016/j.electacta.2014.10.084
  15. T. Yasuda, S. I. Nakamura, Y. Honda, K. Kinugawa, S. Y. Lee, and M. Watanabe, Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications, ACS Appl. Materials & Interfaces, 4, 1783-1790 (2012). https://doi.org/10.1021/am300031k
  16. K. Yaguchi, K. Chen, N. Endo, M. Higa, and K. I. Okamoto, Crosslinked membranes of sulfonated polyimides for polymer electrolyte fuel cell applications, J. Power Sources, 195, 4676-4684 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.081
  17. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  18. G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci., 377, 1-35 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  19. J. H. Hong, Preparation and characterization of weak-base anion exchange membrane, J. Ind. Eng. Chem., 17, 208-212 (2011). https://doi.org/10.1016/j.jiec.2011.02.002
  20. M. Y. Kim. K. J. Kim, and H. Kang, Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol), Appl. Chem. Eng., 21, 621-626 (2010).
  21. N. T. Rebeck, Y. Li, and D. M. Knauss, Poly (phenylene oxide) copolymer anion exchange membranes, J. Polym. Sci. Pt. B-Polym. Phys., 51, 1770-1778 (2013). https://doi.org/10.1002/polb.23245
  22. Y. Xiong, Q. L. Liu, Q. G. Zhang, and A. M. Zhu, Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells, J. Power Sources, 183, 447-453 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.004
  23. Y. Cao, H. J. Wei, and Z. N. Xia, Advances in microwave assisted synthesis of ordered mesoporous materials, Trans. Nonferrous Met. Soc. China, 19, s656-s664 (2009). https://doi.org/10.1016/S1003-6326(10)60127-6
  24. J. H. Park, S. Y. Bong, C. H. Ryu, and G. J. Hwang, Study on the preparation of polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis, Membr. J., 23, 469-474 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.469
  25. T. Sata, T. Yamaguchi, and K. Matsusaki, Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions, J. Phys. Chem. A, 99, 12875-12882 (1995). https://doi.org/10.1021/j100034a028
  26. J. R. Varcoe and R. C. T. Slade, Prospects for Alkaline Anion exchange Membranes in Low Temperature Fuel Cells, Fuel cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
  27. R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, and B. R. Min, Preparation and characterization of proton conducting polysulfone grafted poly (styrene sulfonic acid) polyelectrolyte membranes, J. Ind. Eng. Chem., 15, 299-303 (2009). https://doi.org/10.1016/j.jiec.2008.12.011
  28. M. D. Guiver, G. P. Robertson, S. Rowe, S. Foley, Y. S. Kang, H. C. Park, J. Won, and H. N. L. Thi, Modified polysulfones. IV. Synthesis and characterization of polymers with silicon substituents for a comparative study of gas transport properties, J. Polym. Sci. Pol. Chem., 39, 2103-2124 (2001). https://doi.org/10.1002/pola.1187
  29. J. Yan and M. A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone) s, Macromolecules, 43, 2349-2356 (2010). https://doi.org/10.1021/ma902430y
  30. Y. Zhao, J. Pan, H. Yu, D. Yang, J. Li, L. Zhuang, Z. Shao, and B. Yi, Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application, Int. J. Hydrogen Energy., 38, 1983-1987 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.055
  31. N. Li, Q. Zhang, C. Wang, Y. M. Lee, and M. D. Guiver, Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes, Macromolecules, 45, 2411-2419 (2012). https://doi.org/10.1021/ma202681z
  32. G. Nie, X. Li, J. Tao, W. Wu, and S. Liao, Alkali resistant cross-linked poly (arylene ether sulfone) s membranes containing aromatic side-chain quaternary ammonium groups, J. Membr. Sci., 474, 187-195 (2015). https://doi.org/10.1016/j.memsci.2014.09.053
  33. X. Huang, X. Ou, D. Huang, F. Ding, and Z. Chen, Cross-Linked Polyether Ether Ketone-g-2-(dimethylamino) Ethyl Methacrylate for Anion Exchange Membrane with High Ion Exchange Capacities and OH- permeability, Adv. Sci. Lett., 5, 530-534 (2012). https://doi.org/10.1166/asl.2012.1988
  34. D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and Ion Conducting Properties of Anion Exchange Membranes based on PBI Copolymers for Alkaline Fuel Cells, Membr. J., 20, 217-221 (2010).
  35. Y. S. Li, T. S. Zhao, and W. W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy., 35, 5656-5665 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.026
  36. H. J. Lee, J. Choi, J. Y. Han, H. J. Kim, Y. E. Sung, H. Kim, D. Henkensmeier, E. A. Cho, J. H. Jang, and S. J. Yoo, Synthesis and characterization of poly (benzimidazolium) membranes for anion exchange membrane fuel cells, Polym. Bull., 70, 2619-2631 (2013). https://doi.org/10.1007/s00289-013-0978-0
  37. L. C. Jheng, S. L. C. Hsu, B. Y. Lin, and Y.-l. Hsu, Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells, J. Membr. Sci., 460, 160-170 (2014). https://doi.org/10.1016/j.memsci.2014.02.043
  38. D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. M. H. Duong, J. H. Jang, H.-J. Kim, and N.-S. Woo, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014). https://doi.org/10.1016/j.ijhydene.2013.07.091
  39. M. A. Khan, M. Kumar, and Z. A. Alothman, Preparation and characterization of organic-inorganic hybrid anion-exchange membranes for electrodialysis, J. Ind. Eng. Chem., 21 723-730 (2015). https://doi.org/10.1016/j.jiec.2014.04.002
  40. R. P. Pandey, A. K. Thakur, and V. K. Shahi, Stable and efficient composite anion-exchange membranes based on silica modified poly (ethyleneimine) poly (vinyl alcohol) for electrodialysis, J. Membr. Sci., 469, 478-487 (2014). https://doi.org/10.1016/j.memsci.2014.06.046
  41. T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263, 1-29 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  42. M. M. Nasef and E. S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci., 29, 499-561 (2004). https://doi.org/10.1016/j.progpolymsci.2004.01.003
  43. H. Strathmann, Electromembrane processes: Basic aspects and applications, Elsevier Science: Amsterdam, pp. 391-429.
  44. J. H. Choi, S. H. Kim, and S. H. Moon, Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties, J. Colloid Interface Sci., 241, 120-126 (2001). https://doi.org/10.1006/jcis.2001.7710
  45. K. Kim, P. Heo, T. Ko, and J. C. Lee, Semi-interpenetrating network electrolyte membranes based on sulfonated poly (arylene ether sulfone) for fuel cells at high temperature and low humidity conditions, Electrochem. Commun., 48, 44-48 (2014). https://doi.org/10.1016/j.elecom.2014.08.012
  46. J. Wang, R. He, and Q. Che, Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene, J. Colloid Interface Sci., 361, 219-225 (2011). https://doi.org/10.1016/j.jcis.2011.05.039
  47. Y. H. Kwon, S. C. Kim, and S. Y. Lee, Nanoscale phase separation of sulfonated poly (arylene ether sulfone)/poly (ether sulfone) semi-IPNs for DMFC membrane applications, Macromolecules, 42, 5244-5250 (2009). https://doi.org/10.1021/ma900781c
  48. B. Auclair, V. Nikonenko, C. Larchet, M. Metayer, and L. Dammak, Correlation between transport parameters of ion-exchange membranes, J. Membr. Sci., 195, 89-102 (2002). https://doi.org/10.1016/S0376-7388(01)00556-7
  49. D. J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). https://doi.org/10.1016/j.jiec.2014.04.030
  50. J. W. Bae, Y. H. Cho, Y. E. Sung, K. Shin, and J. Y. Jho, Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane, J. Ind. Eng. Chem., 18, 876-879 (2012). https://doi.org/10.1016/j.jiec.2012.01.019
  51. D. G. Kang, B. K. Hur, D. W. Lee, and K. H. Seo. Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack, Appl. Chem. Eng., 22, 149-154 (2011).
  52. S. Kim and I. Hong, Membrane performance comparison in a proton exchange membrane fuel cell (PEMFC) stack, J. Ind. Eng. Chem., 16, 901-905 (2010). https://doi.org/10.1016/j.jiec.2010.05.017
  53. H. B. Park and Y. M. Lee, Polymer Electrolyte Membranes for Fuel Cell, Appl. Chem. Eng., 13, 1-11 (2002).
  54. S. U. Kim, D. M. Yu, T. H. Kim, Y. T. Hong, S. Y. Nam, and J. H. Choi, Effect of sulfonated poly (arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells, J. Ind. Eng. Chem., In press (2014).
  55. D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, Sulfonated poly (arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell, J. Ind. Eng. Chem., 18, 556-562 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
  56. D. J. Kim and S. Y. Nam, Characterization of Sulfonated Silica Nanocomposite Electrolyte Membranes for Fuel Cell, J. Nanosci. Nanotechnol., 14, 8961-8963 (2014). https://doi.org/10.1166/jnn.2014.10073
  57. D. J. Kim, H. Y. Hwang, and S. Y. Nam, Characterization of sulfonated poly (arylene ether sulfone)(SPAES)/silica-phosphate sol-gel composite membrane: Effects of the sol-gel composition, Macromol. Res., 21, 1194-1200 (2013). https://doi.org/10.1007/s13233-013-1162-y
  58. D. J. Kim, H. J. Lee, and S. Y. Nam, Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications, Int. J. Hydrogen Energy., 39, 17524-17532 (2014). https://doi.org/10.1016/j.ijhydene.2013.09.030
  59. H. S. Choi, J. C. Kim, S. H. Ryu, and G. J. Hwang, Research Review of the All Vanadium Redox-flow Battery for Large Scale Power Storage, Membrane Journal, 21, 107-117 (2011).
  60. E. Sum and M. Skyllas-Kazacos, A study of the V (II)/V (III) redox couple for redox flow cell applications, J. Power Sources, 15, 179-190 (1985). https://doi.org/10.1016/0378-7753(85)80071-9
  61. D. J. Kim and S. Y. Nam, Research Trend of Polymeric Ion Exchange Membrane for Vanadium Redox Flow Battery, Membr. J., 22, 285-300 (2012).
  62. H. Huh, D. J. Kim, and S. Y. Nam, Proton conductivity and Methanol Permeabiliry of sulfonated poly(aryl ether sulfone)/Modified Graphene Hybrid Membranes, Membr. J., 21, 247-255 (2011).
  63. S. G. Park, N. S. Kwak, C. W. Hwang, H. M. Park, and T. S. Hwang, Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications, J. Membr. Sci., 423, 429-437 (2012).
  64. S. Zhang, C. Yin, D. Xing, D. Yang, and X. Jian, Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications, J. Membr. Sci., 363, 243-249 (2010). https://doi.org/10.1016/j.memsci.2010.07.046
  65. C. G. Morandi, R. Peach, H. M. Krieg, and J. Kerres, Novel Imidazolium-Functionalized Anion-Exchange Polymer PBI Blend Membranes, J. Membr. Sci., 476, 256-263 (2015). https://doi.org/10.1016/j.memsci.2014.11.049
  66. S. Wu, K. Zhang, X. Wang, Y. Jia, B. Sun, T. Luo, F. Meng, Z. Jin, D. Lin, and W. Shen, Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide, Chem. Eng. J., 262, 1292-1302 (2015). https://doi.org/10.1016/j.cej.2014.10.092
  67. M. Wang, X. Liu, Y. X. Jia, and X. L. Wang, The Improvement of Comprehensive Transport Properties to Heterogeneous Cation Exchange Membrane by the Covalent Immobilization of Polyethyleneimine, Sep. Purif. Technol., 140, 69-76 (2015). https://doi.org/10.1016/j.seppur.2014.11.016
  68. H. Farrokhzad, T. Kikhavani, F. Monnaie, S. N. Ashrafizadeh, G. Koeckelberghs, T. Van Gerven, and B. Van der Bruggen, Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations, J. Membr. Sci., 474, 167-174 (2015). https://doi.org/10.1016/j.memsci.2014.10.002
  69. J. G. Hong and Y. Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, J. Membr. Sci., 473, 210-217 (2015). https://doi.org/10.1016/j.memsci.2014.09.012
  70. H. Deng, Z. Wang, W. Zhang, B. Hu, and S. Zhang, Preparation and monovalent selective properties of multilayer polyelectrolyte modified cation exchange membranes, J. Appl. Polym. Sci., 132, 41488 (2015).
  71. J. Ma, Z. Wang, D. Suor, S. Liu, J. Li, and Z. Wu, Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators, J. Power Sources, 272, 24-33 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.053
  72. J. Liu, G. M. Geise, X. Luo, H. Hou, F. Zhang, Y. Feng, M. A. Hickner, and B. E. Logan, Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells, J. Power Sources, 271, 437-443 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.026
  73. A. N. Filippov, E. Y. Safronova, and A. B. Yaroslavtsev, Theoretical and experimental investigation of diffusion permeability of hybrid MF-4SC membranes with silica nanoparticles, J. Membr. Sci., 471, 110-117 (2014). https://doi.org/10.1016/j.memsci.2014.08.008
  74. J. Pan, L. Ge, X. Lin, L. Wu, B. Wu, and T. Xu, Cation exchange membranes from hot-pressed electrospun sulfonated poly (phenylene oxide) nanofibers for alkali recovery, J. Membr. Sci., 470, 479-485 (2014). https://doi.org/10.1016/j.memsci.2014.07.061
  75. R. Valek and J. Zachovalova, Cation-exchange membrane modified by inorganic short fibres, Desalin. Water Treat., 1, 1-5 (2014).
  76. L. Brozova, J. Krivcik, D. Nedela, V. Kysela, and J. zitka, The influence of activation of heterogeneous ion-exchange membranes on their electrochemical properties, Desalin. Water Treat., 1-5 (2014).
  77. H. Yan, S. Xue, C. Wu, Y. Wu, and T. Xu, Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis, J. Membr. Sci., 469, 436-446 (2014). https://doi.org/10.1016/j.memsci.2014.07.002
  78. B. Porras, V. Romero, and J. Benavente, Effect of acid/basic solutions contact on ion transport numbers and conductivity for an anion-exchange membrane, Desalin. Water Treat., 1-5 (2014).
  79. S. M. Hosseini, S. Rafiei, A. R. Hamidi, A. R. Moghadassi, and S. S. Madaeni, Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: Ionic transport property in desalination, Desalination, 351, 138-144 (2014). https://doi.org/10.1016/j.desal.2014.07.036
  80. K. J. Chae, K. Y. Kim, M. J. Choi, E. Yang, I. S. Kim, X. Ren, and M. Lee, Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells, Chem. Eng. J., 254, 393-398 (2014). https://doi.org/10.1016/j.cej.2014.05.145
  81. L. Yang, B. Tang, and P. Wu, A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low Humidity, J. Membr. Sci., 467, 236-243 (2014). https://doi.org/10.1016/j.memsci.2014.05.033
  82. Z. Sun, X. Wei, H. Zhang, and X. Hu, Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-DBS composite film, Environ. Sci.Pollut. R., DOI 10.1007/s11356-014-3641-x (2014).
  83. M. Arsalan, Binding nature of polystyrene and PVC 50: 50% with CP and NP 50: 50% ion exchangeable, mechanically and thermally stable membrane, J. Ind. Eng. Chem., 20, 3283-3291 (2014). https://doi.org/10.1016/j.jiec.2013.11.068
  84. H. Farrokhzad, T. Van Gerven, and B. Van der Bruggen, Selective composite cation-exchange membrane based on S-PVDF, Desalin. Water Treat., 1-7 (2014).
  85. A. R. Moghadassi, P. Koranian, S. M. Hosseini, M. Askari, and S. S. Madaeni, Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nano tubes, J. Ind. Eng. Chem., 20, 2710-2718 (2013).
  86. X. A. Walter, J. Greenman, and I. A. Ieropoulos, Intermittent load implementation in microbial fuel cells improves power performance, Bioresource Technol., 172, 365-372 (2014). https://doi.org/10.1016/j.biortech.2014.09.034
  87. R. Ghalloussi, L. Chaabane, L. Dammak, and D. Grande, Ageing of ion-exchange membranes used in an electrodialysis for food industry: SEM, EDX, and limiting current investigations, Desalin. Water Treat., 10.1080/19443994.2014.968908, 1-6 (2014).
  88. R. Zerdoumi, K. Oulmi, and S. Benslimane, Enhancement of counter- ion transport through ion-exchange membranes in electrodialytic processes, Desalin. Water Treat., 10.1080/19443994.2014.972734, 1-6 (2014).
  89. M. Cherif, I. Mkacher, R. Ghalloussi, L. Chaabane, A. Ben Salah, K. Walha, L. Dammak, and D. Grande, Experimental investigation of neutralization dialysis in three-compartment membrane stack, Desalin. Water Treat., 10.1080/19443994.2014.968903, 1-9 (2014).
  90. J. Krivcik, D. Nedela, J. Hadrava, and L. Brozova, Increasing selectivity of a heterogeneous ion-exchange membrane, Desalin. Water Treat., 10.1080/19443994.2014.980970, 1-7 (2014).
  91. M. Ghahraman Afshar, G. A. Crespo, and E. Bakker, Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis, Biosens. Bioelectron., 61, 64-69 (2014). https://doi.org/10.1016/j.bios.2014.04.039
  92. S. Pandit, S. Khilari, K. Bera, D. Pradhan, and D. Das, Application of PVA-DDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell, Chem. Eng. J., 257, 138-147 (2014). https://doi.org/10.1016/j.cej.2014.06.077
  93. F. T. Wandschneider, D. Finke, S. Grosjean, P. Fischer, K. Pinkwart, J. Tubke, and H. Nirschl, Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction, J. Power Sources, 272, 436-447 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.082
  94. U. Chatterjee, V. Bhadja, and S. K. Jewrajka, Effect of phase separation and adsorbed water on power consumption and current efficiency of terpolymer conetwork-based anion exchange membrane, J. Mater. Chem. A, 2, 16124-16134 (2014). https://doi.org/10.1039/C4TA03474K
  95. M. Zarrinkhameh, A. Zendehnam, and S. M. Hosseini, Electrochemical, morphological and antibacterial characterization of PVC based cation exchange membrane modified by zinc oxide nanoparticles, J. Polymer Res., 20, 1-9 (2013).
  96. K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, S. B. Moon, J. H. Chung, and A. S. Kang, Effect of cross-linking agent and heteropolyacid (HPA) contents on physicochemical characteristics of covalently cross-linked sulfonated poly (ether ether ketone)/HPAs composite membranes for water electrolysis, J. Ind. Eng. Chem., 17, 657-666 (2011). https://doi.org/10.1016/j.jiec.2011.02.017

Cited by

  1. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options vol.164, pp.1, 2017, https://doi.org/10.1149/2.0451701jes
  2. Vinyl Benzyl Chloride로 제조된 음이온 교환막의 구조적 고찰 및 전기화학적 특성 vol.25, pp.4, 2015, https://doi.org/10.14579/membrane_journal.2015.25.4.310
  3. 실란계 복합화 무기물을 이용한 SPAES 복합막의 특성평가 vol.25, pp.5, 2015, https://doi.org/10.14579/membrane_journal.2015.25.5.456
  4. 폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가 vol.27, pp.1, 2015, https://doi.org/10.14579/membrane_journal.2017.27.1.92
  5. 특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향 vol.28, pp.4, 2017, https://doi.org/10.14478/ace.2017.1059
  6. Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2015, https://doi.org/10.3390/ma11122465