DOI QR코드

DOI QR Code

Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes

그래핀 옥사이드가 탄소나노튜브기반 바이오센서 전극의 포도당 산화효소 담지능및 민감도에 미치는 영향

  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Do Young (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 박미선 (충남대학교 바이오응용화학과) ;
  • 김도영 (충남대학교 바이오응용화학과) ;
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2014.10.03
  • Accepted : 2014.11.24
  • Published : 2015.02.10

Abstract

To improve both the GOD immobilization capability and sensitivity of MWCNTs-based biosensor electrode, the electrode was prepared by adding different quantities of GO. The addition of GO increased hydrophilicity and the surface free energy of electrodes for glucose sensing as well as the dispersion of MWCNTs. In addition, the GOD immobilization capability was enhanced and the sensitivity was improved up to $121{\mu}A\;mM^{-1}$ even though having a high $K_m$ value (0.105) when adding 0.05 g GO to 0.05 g MWCNTs. These experimental results were attributed to the fact that the improvement in dispersion stability for MWCNTs, hydrophilicity, and surface free energy of electrode surface due to the addition of GO affected GOD immobilization capability.

본 연구에서는 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs) 기반 바이오센서 전극의 포도당 산화효소(glucose oxidase, GOD) 담지능을 높여 그 민감도를 개선하고자 그래핀 옥사이드(graphene oxide, GO)를 첨가하여 전극을 제조하였다. GO 첨가로 인하여 MWCNTs의 분산뿐만 아니라 전극의 친수성 및 표면에너지가 증가하였다. 또한, MWNCTs 0.05 g에 GO 0.05 g를 첨가하였을 때 $K_m$ (Michaelis-Menten constant)이 0.105로 가장 높은 값을 나타냈음에도 불구하고 GOD 담지능이 높아졌으며, 민감도가 $121{\mu}A\;mM^{-1}$까지 향상됨을 알 수 있었다. 이러한 실험 결과는 GO첨가에 의한 MWCNTs의 분산 안정성 향상, MWCNTs 전극 표면에서 친수성으로 개질 및 표면 자유에너지 증가가 GOD 담지능에 영향을 미친 것으로 사료된다.

Keywords

References

  1. H. Deng, A. K. L. Teo, and Z. Gao, An interference-free glucose biosensor based on a novel low potential redox polymer mediator, Sens. Actuators B, 191, 522-528 (2014). https://doi.org/10.1016/j.snb.2013.10.059
  2. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip, Biomed. Opt. Express, 5, 1636-1648 (2014). https://doi.org/10.1364/BOE.5.001636
  3. M. Moyo, J. O. Okonkwo, and N. M. Agyei, An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol., 56, 28-34 (2014). https://doi.org/10.1016/j.enzmictec.2013.12.014
  4. A. H. Keihan, S. Sajjadi, N. Sheibani, and A. A. Moosavi-Movahedi, A highly sensitive choline biosensor based on bamboo-like multiwallcarbon nanotubes/ionic liquid/Prussian blue nanocomposite, Sens. Actuators B, 204, 694-703 (2014). https://doi.org/10.1016/j.snb.2014.08.039
  5. K. Yang and C. Y. Zhang, Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor, Biosens. Bioelectron., 28, 257-262 (2011). https://doi.org/10.1016/j.bios.2011.07.028
  6. H. R. Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor, J. Ind. Eng. Chem., 18, 674-679 (2012). https://doi.org/10.1016/j.jiec.2011.11.064
  7. G. Fu, X. Yue, and Z. Dai, Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid, Biosens. Bioelectron., 26, 3973-3976 (2011). https://doi.org/10.1016/j.bios.2011.03.007
  8. R. Nenkova, D. Ivanova, J. Vladimirova, and T. Godjevargova, New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film, Sens. Actuators B, 148, 59-65 (2010). https://doi.org/10.1016/j.snb.2010.05.034
  9. D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23, 1482-1513 (2011). https://doi.org/10.1002/adma.201003188
  10. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Z. Boril, and K. S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev., 112, 6156-6214 (2012). https://doi.org/10.1021/cr3000412
  11. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010). https://doi.org/10.1039/B917103G
  12. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  13. H. C. Tian, J. Q. Liu, and D. X. Wei, Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface, Biomaterials, 35, 2120-2129 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.058
  14. Y. Gao, H. L. Yip, K. S. Chen, K. M. O'Malley, O. Acton, Y. Sun, G. Ting, H. Z. Chen, and A. K. Y. Jen, Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices, Adv. Mater., 23, 1903-1908 (2011). https://doi.org/10.1002/adma.201100065
  15. H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Electrochromic polyaniline/ graphite oxide nanocomposites with endured electrochemical energy storage, Polymer, 54, 1820-1831 (2013). https://doi.org/10.1016/j.polymer.2013.01.051
  16. K. Sablok, V. Bhalla, P. Sharma, R. Kaushal, S. Chaudhary, and C. R. Suri, Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene, J. Hazard. Mater., 248-249, 322-328 (2013). https://doi.org/10.1016/j.jhazmat.2013.01.022
  17. B. Unnikrishnan, S. Palanisamy, and S. M. Chen, A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite, Biosens. Bioelectron., 39, 70-75 (2013). https://doi.org/10.1016/j.bios.2012.06.045
  18. S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with specific dendrimer, Sens. Actuators B, 195, 150-155 (2014). https://doi.org/10.1016/j.snb.2013.12.109
  19. M. S. Park, K. J. Yun, and Y. S. Lee, Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene oxide, Appl. Chem. Eng., 25, 613-618 (2014). https://doi.org/10.14478/ace.2014.1105
  20. D. Y. Kim, S. J. In, and Y. S. Lee, Effect of fluorination and ultrasonic washing treatment on surface characteristics of poly(ethylene terephthalate), Polymer (Korea), 37, 316-322 (2012).
  21. Joseph Wang, Analytical electrochemistry 3rd, John Wiley & Sons Inc. (2006).
  22. L. Yue, G. Pircheraghi, S. A. Monemian, and I. Manas-Zloczower, Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects, Carbon, 78, 268-278 (2014). https://doi.org/10.1016/j.carbon.2014.07.003
  23. S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liua, and S. X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 4, 1855-1865 (2011). https://doi.org/10.1039/c1ee01039e
  24. Y. H. Kim, Contact Angle & Surface Energy, Prospectives of Industrial Chemistry, 8, 82-93 (2005).
  25. L. Y. Meng and S. J. Park, Improvement of superhydrophobicity of multi-walled carbon nanotubes produced by fluorination, Carbon Lett., 13, 178-181 (2012). https://doi.org/10.5714/CL.2012.13.3.178
  26. J. S. Im, J. Yun, J. G. Kim, T. S. Bae, and Y. S. Lee, The effect of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes, Appl. Sur. Sci., 258, 2219-2225 (2012). https://doi.org/10.1016/j.apsusc.2011.08.017
  27. S. M. Oh, Electrochemistry, 1st ed., 1-26, Freeacademy, Korea.
  28. L. Cheng and S. Dong, Electrochemical behavior and electrocatalytic properties of ultrathin films containing silicotungstic heteropolyanion SiW12O404-, J. Electrochem. Soc., 147, 606-612 (2000). https://doi.org/10.1149/1.1393241
  29. G. L. Long and J. D. Winefordner, Limit of detection. A closer look at the IUPAC definition, Anal. Chem., 55, 712A-724A (1983).
  30. T. S. Bae, E. Shin, J. S. Im, J. G. Kim, and Y. S. Lee, Effects of carbon structure orientation on the performance of glucose sensors fabricated from electrospun carbon fibers, J. Non-Cryst. Solids, 358, 544-549 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.11.002