DOI QR코드

DOI QR Code

Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide

그래핀 옥사이드의 환원 반응에 적용되는 3종류 환원제에 관한 비교 연구

  • Park, No Il (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Park, Wan-Su (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Lee, Seul Bi (EverChemTech Co., Ltd.) ;
  • Lee, Seong Min (EverChemTech Co., Ltd.) ;
  • Chung, Dae-Won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • Received : 2014.12.01
  • Accepted : 2014.12.24
  • Published : 2015.02.10

Abstract

We conducted reduction reactions of graphene oxide (GO) using three selected reductants. The conductivity and solubility of three kinds of the reduced graphene oxides (RGOs) were examined based on the degree of reduction. When the ethylene glycol (EG) was used as a reductant, the reduction reaction did not sufficiently progress and as a result the conductivity of RGOs was observed to be relatively low. For RGOs made by hydrazine (HZ) and thiourea dioxide (TU), we observed no significant differences in the degree of the reduction, conductivity and dispersity in water. However, RGO prepared by TU showed an exceptionally good solubility in N-methylpyrrolidone, and the solution was stable for more than 4 months.

본 연구에서는, 그래핀 옥사이드(GO)의 환원에 가장 보편적으로 사용되는 3종류의 환원제를 사용하여 환원 그래핀 옥사이드(RGO)를 제조하였다. 합성된 3종류 RGO의 화학적 구조를 비교/분석하여 구조적 특징에 따른 전도도 및 분산성의 차이를 고찰하였다. Ethylene glycol을 사용한 경우에는 환원도가 낮고 전도도도 상대적으로 낮았다. 반면에 hydrazine과 thiourea dioxide (TU)를 사용하여 합성한 RGO에서는 환원 정도, 전도도 및 물에서의 분산성 등에 차이가 거의 없었다. 그러나 N-methylpyrrolidone에서의 분산성은 TU에 의해 합성된 RGO에서 가장 우수하여 4개월 후에도 안정적인 분산액을 유지하였다.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  3. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  5. A. Esfandiar, O. Akhavan, and A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide, J. Mater. Chem., 21, 10907-10914 (2011). https://doi.org/10.1039/c1jm10151j
  6. M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, and J. M. D. Tascon, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J. Phys. Chem. C, 114, 6426-6432 (2010).
  7. J. Gao, F. Liu, Y. L. Liu, N. Ma, Z. Q. Wang, and X. Zhang, Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid, Chem. Mater., 22, 2213-2218 (2010). https://doi.org/10.1021/cm902635j
  8. Y. Wang, Z. X. Shi, and J. Yin, Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites, ACS Appl. Mater. Interfaces, 3, 1127-1133 (2011). https://doi.org/10.1021/am1012613
  9. O. Akhavan, M. Kalaee, Z. S. Alavi, S. M. A. Ghiasi, and A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon, 50, 3015-3025 (2012). https://doi.org/10.1016/j.carbon.2012.02.087
  10. C. K. Chua, A. Ambrosi, and M. Pumera, Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide, J. Mater. Chem., 22, 11054-11061 (2012). https://doi.org/10.1039/c2jm16054d
  11. N. Pan, D. Guan, Y. Yang, Z. Huang, R. Wang, Y. Jin, and C. Xia, A rapid low-temperature synthetic method leading to large-scale carboxyl graphene, Chem. Eng. J., 236, 471-479 (2014). https://doi.org/10.1016/j.cej.2013.10.060
  12. Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochim. Acta., 88, 519-525 (2013). https://doi.org/10.1016/j.electacta.2012.10.082
  13. B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, and Y. S. Chen, Buffer Layer of PEDOT:PSS/Graphene Composite for Polymer Solar Cells, J. Nanosci. Nanotechnol., 10, 1934-1938 (2010). https://doi.org/10.1166/jnn.2010.2107
  14. N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer, Appl. Chem. Eng., 25, 581-585 (2014). https://doi.org/10.14478/ace.2014.1087
  15. Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang, Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea, Surf. Sci. Rep., 258, 1704-1710 (2011).
  16. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473, 51-87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
  17. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman spectroscopy, Nano Lett., 10, 751-758 (2010). https://doi.org/10.1021/nl904286r
  18. D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A. T. S. Wee, and Z. Shen, Electronic structure of graphite oxide and thermally reduced graphite oxide, Carbon, 49, 1362-1366 (2011). https://doi.org/10.1016/j.carbon.2010.12.002
  19. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

Cited by

  1. Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by Bar Coating vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1032
  2. Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1087
  3. Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1119