DOI QR코드

DOI QR Code

Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

  • Pajarillo, Edward Alain B. (Department of Animal Resources Science, Dankook University) ;
  • Chae, Jong Pyo (Department of Animal Resources Science, Dankook University) ;
  • Balolong, Marilen P. (Department of Animal Resources Science, Dankook University) ;
  • Kim, Hyeun Bum (Department of Animal Resources Science, Dankook University) ;
  • Seo, Kang-Seok (Department of Animal Science and Technology, Sunchon National University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
  • Received : 2014.08.25
  • Accepted : 2014.11.03
  • Published : 2015.04.01

Abstract

This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

Keywords

References

  1. Brossard, L., J. -Y. Dourmad, J. Rivest, and J. van Milgen. 2009. Modelling the variation in performance of a population of growing pig as affected by lysine supply and feeding strategy. Animal 3:1114-1123. https://doi.org/10.1017/S1751731109004546
  2. Canibe, N., O. Hojberg, S. Hojsgaard, and B. B. Jensen. 2005. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim. Sci. 83:1287-1302. https://doi.org/10.2527/2005.8361287x
  3. Chun, J., J. -H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57:2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Dougal, K., G. de la Fuente, P. A. Harris, S. E. Girdwood, E. Pinloche, R. J. Geor, B. D. Nielsen, H. C. Schott II, S. Elzinga, and C. J. Newbold. 2014. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PLoS One 9(2):e87424. https://doi.org/10.1371/journal.pone.0087424
  5. Dowd, S. E., Y. Sun, R. D. Wolcott, A. Domingo, and J. A. Carroll. 2008. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. Dis. 5:459-472. https://doi.org/10.1089/fpd.2008.0107
  6. Gao, Z., C. H. Tseng, Z. Pei, and M. J. Blaser. 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA. 104:2927-2932. https://doi.org/10.1073/pnas.0607077104
  7. Georgsson, L. and J. Svendsen. 2002. Degree of competition at feeding differentially affects behavior and performance of group-housed growing-finishing pigs of different relative weights. J. Anim. Sci. 80:376-383. https://doi.org/10.2527/2002.802376x
  8. Guan, L. L., J. D. Nkrumah, J. A. Basarab, and S. S. More. 2008. Linkage of microbial ecological to phenotype: Correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiol. Lett. 288:85-91. https://doi.org/10.1111/j.1574-6968.2008.01343.x
  9. Hong, S. M., J. H. Hwang, and I. H. Kim. 2012. Evaluation of the effect of low dietary fermentable carbohydrate content on growth performance, nutrient digestibility, blood characteristics, and meat quality in finishing pigs. Asian Australas. J. Anim. Sci. 25:1294-1299. https://doi.org/10.5713/ajas.2011.11403
  10. Iino, T., K. Mori, K. Tanaka, K. Suzuki, and S. Harayama. 2007. Oscillibacter valericigenes gen. nov., sp. nov., a valerateproducing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 57:1840-1845. https://doi.org/10.1099/ijs.0.64717-0
  11. Ige, B. A. 2013. Probiotics use in intensive fish farming. Afr. J. Microbiol. Res. 7:2701-2711. https://doi.org/10.5897/AJMR12x.021
  12. Kim, H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153:124-133. https://doi.org/10.1016/j.vetmic.2011.05.021
  13. Kim, H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA. 109:15485-15490. https://doi.org/10.1073/pnas.1205147109
  14. Laerke, H. N. and B. B. Jensen. 1999. D-Tagatose has low small intestinal digestibility but high large intestinal fermentability in pigs. J. Nutr. 129:1002-1009. https://doi.org/10.1093/jn/129.5.1002
  15. Lamendella, R., J. W. S. Domingo, S. Ghosh, J. Martinson, and D. B. Oerther. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11:103-120. https://doi.org/10.1186/1471-2180-11-103
  16. Lu, X. -M., P. -Z. Lu, and H. Zhang. 2013. Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16 rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. 98:2657-2665.
  17. Mosenthin, R. 1998. Physiology of small and large intestine of swine - Review -. Asian Australas. J. Anim. Sci. 11:608-619. https://doi.org/10.5713/ajas.1998.608
  18. Pajarillo, E. A. B., J. P. Chae, M. P. Balolong, H. B. Kim, K. -S. Seo, and Kang D.-K. 2014a. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 52:646-651. https://doi.org/10.1007/s12275-014-4270-2
  19. Pajarillo, E. A. B., J. P. Chae, M. P. Balolong, H. B. Kim, and D. -K. Kang. 2014b. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60:140-146. https://doi.org/10.2323/jgam.60.140
  20. Park, J. C., S. H. Lee, J. K. Hong, J. H. Cho, I. H. Kim, and S. K. Park. 2014. Effect of dietary supplementation of procyanidin on growth performance and immune response in pigs. Asian Australas. J. Anim. Sci. 27:131-139. https://doi.org/10.5713/ajas.2013.13359
  21. Pieper, R., P. Janczyk, V. Urubschurov, U. Korn, B. Pieper, and W. B. Souffrant. 2009. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets. Int. J. Food Microbiol. 130:227-232. https://doi.org/10.1016/j.ijfoodmicro.2009.01.026
  22. Politis, D. N. and J. P. Romano. 1993. On the sample variance of linear statistics derived from mixing sequences. Stoch. Process. Appl. 45:155-167. https://doi.org/10.1016/0304-4149(93)90066-D
  23. Richards, J. D., J. Gong, and C. F. M. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Can. J. Anim. Sci. 85:421-435. https://doi.org/10.4141/A05-049
  24. Schwab, C. R. 2007. Quantitative and Molecular Genetic Components of Selection for Intramuscular Fat in Duroc Swine. Ph.D. Thesis, Iowa State University, Ames, IA, USA.
  25. Siavoshian, S., H. M. Biottiere, E. Le Foll, B. Kaeffer, C. Cherbut, and J. P. Galmiche. 1997. Comparison of the effect of short chain fatty acids on the growth and differentiation of human colonic carcinoma cell lines in vitro. Cell Biol. Int. 21:281-287. https://doi.org/10.1006/cbir.1997.0153
  26. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  27. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Yang, L., G. Bian, Y. Su, and W. Zhu. 2014. Comparison of faecal microbial community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows. Asian Australas. J. Anim. Sci. 27:898-906. https://doi.org/10.5713/ajas.2013.13621
  29. Zhou, X., R. Westman, R. Hickey, M. A. Hansmann, C. K. Kennedy, T. W. Osborn, and L. J. Forney. 2009. Vaginal microbiota of women with frequent vulvovaginal candidiasis. Infect. Immun. 77:4130-4135. https://doi.org/10.1128/IAI.00436-09

Cited by

  1. High-throughput sequencing of 16S rRNA Gene Reveals Substantial Bacterial Diversity on the Municipal Dumpsite vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0758-8
  2. sp. in swine: insights from gut microbiota vol.122, pp.3, 2017, https://doi.org/10.1111/jam.13364
  3. Porcine intestinal microbiota is shaped by diet composition based on rye or triticale vol.123, pp.6, 2017, https://doi.org/10.1111/jam.13595
  4. Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers vol.30, pp.9, 2017, https://doi.org/10.5713/ajas.17.0063
  5. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth vol.6, pp.1, 2018, https://doi.org/10.1186/s40168-017-0384-1
  6. Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios vol.111, pp.9, 2018, https://doi.org/10.1007/s10482-018-1057-1
  7. Temporal Dynamics of Bacterial Communities in Soil and Leachate Water After Swine Manure Application vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.03197
  8. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age vol.56, pp.5, 2018, https://doi.org/10.1007/s12275-018-7486-8
  9. Stages of pregnancy and weaning influence the gut microbiota diversity and function in sows vol.127, pp.3, 2015, https://doi.org/10.1111/jam.14344
  10. BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1 vol.97, pp.9, 2019, https://doi.org/10.1093/jas/skz208
  11. Age-related compositional and functional changes in micro-pig gut microbiome vol.41, pp.6, 2015, https://doi.org/10.1007/s11357-019-00121-y
  12. Modulatory Effect of Protein and Carotene Dietary Levels on Pig gut Microbiota vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-51136-6
  13. Effects of acute heat stress on intestinal microbiota in grow‐finishing pigs, and associations with feed intake and serum profile vol.128, pp.3, 2015, https://doi.org/10.1111/jam.14504
  14. Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures vol.14, pp.4, 2015, https://doi.org/10.1017/s1751731119002453
  15. Interactions between host and gut microbiota in domestic pigs: a review vol.11, pp.3, 2020, https://doi.org/10.1080/19490976.2019.1690363
  16. Gut microbiota and blood metabolomics in weaning multiparous sows: Associations with oestrous vol.104, pp.4, 2015, https://doi.org/10.1111/jpn.13296
  17. The Effect of Coconut Oil Addition to Feed of Pigs on Rectal Microbial Diversity and Bacterial Abundance vol.10, pp.10, 2015, https://doi.org/10.3390/ani10101764
  18. Timely Control of Gastrointestinal Eubiosis: A Strategic Pillar of Pig Health vol.9, pp.2, 2015, https://doi.org/10.3390/microorganisms9020313
  19. Identification of Enterotype and Its Effects on Intestinal Butyrate Production in Pigs vol.11, pp.3, 2021, https://doi.org/10.3390/ani11030730
  20. Dietary Fiber Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Function Damage in Piglets by Modulation of Intestinal Microbiome vol.6, pp.2, 2015, https://doi.org/10.1128/msystems.01374-20
  21. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry vol.792, pp.None, 2015, https://doi.org/10.1016/j.scitotenv.2021.148259