DOI QR코드

DOI QR Code

MMP2 Gene-735 C/T and MMP9 gene -1562 C/T Polymorphisms in JAK2V617F Positive Myeloproliferative Disorders

  • Sag, Sebnem Ozemri (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Gorukmez, Ozlem (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Ture, Mehmet (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Gorukmez, Orhan (Department of Medical Genetics, Sevket Yilmaz Education and Research Hospital) ;
  • Topak, Ali (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Sahinturk, Serdar (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Ocakoglu, Gokhan (Department of Biostatistics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Gulten, Tuna (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Ali, Ridvan (Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Uludag University) ;
  • Yakut, Tahsin (Department of Medical Genetics, Division of Hematology, Faculty of Medicine, Uludag University)
  • 발행 : 2015.02.25

초록

Background: Myeloproliferative disorders (MPDs) are clonal hematologic malignancies originating at the level of the pluripotent hematopoietic stem cell. Matrix metalloproteases (MMPs) are proteolytic enzymes that contribute to all stages of malignancy progression. Genetic variants in the MMP genes may influence the biological function of these enzymes and change their role in carcinogenesis and progression. To our knowledge, this is the first investigation of associations between the -735 C/T and -1562 C/T polymorphisms in the MMP2 and MMP9 genes, respectively, and the risk of essential thrombocytosis (ET), and polycythemia vera (PV). Materials and Methods: The case-control study included JAK2V617F mutation positive 102 ET and PV patients and 111 controls. Polymorphisms were determined by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and electrophoresis. Results: No statistically significant differences were detected between patient (ET+PV) and control groups regarding genotype distribution for MMP2 gene-735 C/T and MMP9 gene -1562 C/T polymorphisms and C/T allele frequency (p>0.050). Statistically borderline significance was observed between PV and control groups regarding genotype distribution for the MMP9 gene -1562 C/T polymorphism (p=0.050, OR=2.26, 95%Cl=0.99-5.16). Conclusions: Consequently this study supported that CC genotype of MMP9 gene -1562 C/T polymorphism may be related with PV even if with borderline significance.

키워드

참고문헌

  1. Awakura Y, Ito N, Nakamura E, et al (2006). Matrix metalloproteinase-9 polymorphisms and renal cell carcinoma in a Japanese population. Cancer Lett, 241, 59-63. https://doi.org/10.1016/j.canlet.2005.10.005
  2. Barbui T, Barosi G, Birgegard G, et al (2011). Philadelphianegative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol, 29, 761-70. https://doi.org/10.1200/JCO.2010.31.8436
  3. Bayramoglu A, Urhan Kucuk M, Guler HI, et al (2013). Is there any genetic predisposition of MMP-9 gene C1562T and MTHFR gene C677T polymorphisms with essential hypertension? Cytotechnology, Nov 21. [Epub ahead of print]
  4. Besses C, Cervantes F, Pereira A, et al (1999). Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia, 13, 150-4. https://doi.org/10.1038/sj.leu.2401270
  5. Buggins AG, Levi A, Gohil S, et al (2011). Evidence for a macromolecular complex in poor prognosis CLL that contains CD38, CD49d, CD44 and MMP-9. Br J Haematol, 154, 216-22. https://doi.org/10.1111/j.1365-2141.2011.08725.x
  6. Dameshek W (1951). Some speculations on the myeloproliferative syndromes. Blood, 6, 372-5.
  7. Decock J, Paridaens R, Ye S (2008). Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet, 73, 197-211.
  8. Egeblad M, Werb Z (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2, 161-74. https://doi.org/10.1038/nrc745
  9. Ennis BW, Matrisian LM (1994). Matrix degrading metalloproteinases. J Neuro Oncol, 18, 105-9. https://doi.org/10.1007/BF01050416
  10. Gentner B, Wein A, Croner RS, et al (2009). Differences in the gene expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in primary colorectal tumors and their synchronous liver metastases. Anticancer Res, 29, 67-74.
  11. Gruppo Italiano Studio Policitemia (1995). Polycythemia vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med, 123, 656-64. https://doi.org/10.7326/0003-4819-123-9-199511010-00003
  12. Guo XT, Wang JF, Zhang LY, Xu GQ (2012). Quantitative assessment of the effects of MMP-2 polymorphisms on lung carcinoma risk. Asian Pac J Cancer Prev, 13, 2853-6. https://doi.org/10.7314/APJCP.2012.13.6.2853
  13. Haferlach T, Bacher U, Kern W, Schnittger S, Haferlach C (2008). The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers. Ann Hematol, 87, 1-10.
  14. Harendza S, Lovett DH, Panzer U, et al (2003). Linked common polymorphisms in the gelatinase a promoter are associated with diminished transcriptional response to estrogen and genetic fitness. J Biol Chem, 278, 20490-9. https://doi.org/10.1074/jbc.M211536200
  15. Hewitt R, Dan K (1996). Stromal cell expression of components of matrixdegrading protease systems in human cancer. Enzyme Protein, 49, 163-73.
  16. Hu C, Wang J, Xu Y, et al (2013). Current evidence on the relationship between five polymorphisms in the matrix metalloproteinases (MMP) gene and lung cancer risk: a meta-analysis. Gene, 517, 65-71. https://doi.org/10.1016/j.gene.2012.12.085
  17. Kaushansky K (2006). Hematopoietic growth factors, signaling and the chronic myeloproliferative disorders. Cytokine Growth Factor Rev, 17, 423-30. https://doi.org/10.1016/j.cytogfr.2006.09.005
  18. Kuittinen O, Savolainen ER, Koistinen P, Mottonen M, Turpeenniemi-Hujanen T (2001). MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (ALL). Leuk Res, 25, 125-31. https://doi.org/10.1016/S0145-2126(00)00104-1
  19. Lacchini R, Jacob-Ferreira AL, Luizon MR, et al (2012). Common matrix metalloproteinase 2 gene haplotypes may modulate left ventricular remodelling in hypertensive patients. J Hum Hypertens, 26, 171-7. https://doi.org/10.1038/jhh.2011.8
  20. Lane WJ, Dias S, Hattori K, et al (2000). Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood, 96, 4152-9.
  21. Langers AM, Sier CF, Hawinkels LJ, et al (2008). MMP-2 geno-phenotype is prognostic for colorectal cancer survival, whereas MMP-9 is not. Br J Cancer, 98, 820-3.
  22. Li LN, Zhou X, Gu Y, Yan J (2013). Prognostic value of MMP-9 in ovarian cancer: a meta-analysis. Asian Pac J Cancer Prev, 14, 4107-13. https://doi.org/10.7314/APJCP.2013.14.7.4107
  23. Li Y, Jin X, Kang S, et al (2006). Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7, and -9 and the risk of epithelial ovarian cancer in China. Gynecol Oncol, 101, 92-6. https://doi.org/10.1016/j.ygyno.2005.09.058
  24. Majka M, Janowska-Wieczorek A, Ratajczak J, et al (2000). Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood, 96, 4142-51.
  25. Malaponte G, Polesel J, Candido S, et al (2013). IL-6-174 G > C and MMP-9-1562 C>T polymorphisms are associated with increased risk of deep vein thrombosis in cancer patients. Cytokine, 62, 64-9. https://doi.org/10.1016/j.cyto.2013.02.017
  26. Marchioli R, Finazzi G, Landolfi R, et al (2005). Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol, 23, 2224-32. https://doi.org/10.1200/JCO.2005.07.062
  27. Marquez-Curtis LA, Dobrowsky A, Montano J, et al (2001). Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures. Br J Haematol, 115, 595-604. https://doi.org/10.1046/j.1365-2141.2001.03160.x
  28. Matrisian LM (1990). Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet, 6, 121-5. https://doi.org/10.1016/0168-9525(90)90126-Q
  29. Mehtap O, Atesoglu EB, Tarkun P, et al (2012). The association between gene polymorphisms and leukocytosis with thrombotic complications in patients with essential thrombocythemia and polycythemia vera. Turk J Haematol, 29, 162-9. https://doi.org/10.5505/tjh.2012.03780
  30. Ogawa M, Kawamoto M, Yamanaka N (2000). Matrix metalloproteinase and tissue inhibitor of metalloproteinase in human bone marrow tissues-an immunohistochemical study. J Nippon Med Sch, 67, 235-41. https://doi.org/10.1272/jnms.67.235
  31. Palei AC, Sandrim VC, Amaral LM, et al (2012). Matrix metalloproteinase-9 polymorphisms affect plasma MMP-9 levels and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharmacogenomics J, 12, 489-98. https://doi.org/10.1038/tpj.2011.31
  32. Park KS, Kim SJ, Kim KH, Kim JC (2011). Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J Gastroenterol Hepatol, 26, 391-7. https://doi.org/10.1111/j.1440-1746.2010.06504.x
  33. Payandeh M, Zadeh FS, Zare ME, et al (2011). Evalution of common genetic disorders in myeloproliferative neoplasms. IJHOSCR, 5, 16-20.
  34. Pereza N, Ostojic S, Volk M, Kapovic M, Peterlin B (2012). Matrix metalloproteinases 1, 2, 3 and 9 functional single-nucleotide polymorphisms in idiopathic recurrent spontaneous abortion. Reprod Biomed Online, 24, 567-75. https://doi.org/10.1016/j.rbmo.2012.01.008
  35. Price SJ, Greaves DR, Watkins H (2000). Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene:role of Sp1 in allele-specific transcriptional regulation. J Biol Chem, 276, 7549-58.
  36. Rollin J, Regina S, Vourc'h P, et al (2007). Influence of MMP-2 and MMP-9 promoter polymorphisms on gene expression and clinical outcome of non-small cell lung cancer. Lung Cancer, 56, 273-80. https://doi.org/10.1016/j.lungcan.2006.11.021
  37. Saeed HM, Alanazi MS, Parine NR, et al (2013). Matrix metalloproteinase-2 (-1306 c>t) promoter polymorphism and risk of colorectal cancer in the Saudi population. Asian Pac J Cancer Prev, 14, 6025-30. https://doi.org/10.7314/APJCP.2013.14.10.6025
  38. Sanii S, Saffar H, Tabriz HM, et al (2012). Expression of matrix metalloproteinase-2, but not caspase-3, facilitates distinction between benign and malignant thyroid follicular neoplasms. Asian Pac J Cancer Prev, 13, 2175-8. https://doi.org/10.7314/APJCP.2012.13.5.2175
  39. Scott LM (2013). Lymphoid malignancies: another face to the Janus kinases. Blood Rev, 27, 63-70. https://doi.org/10.1016/j.blre.2012.12.004
  40. Sfar S, Saad H, Mosbah F, Gabbouj S, Chouchane L (2007). TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet Cytogenet, 172, 38-44. https://doi.org/10.1016/j.cancergencyto.2006.07.014
  41. Srivastava P, Kapoor R, Mittal RD (2013). Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India. Urol Oncol, 31, 247-54. https://doi.org/10.1016/j.urolonc.2011.01.001
  42. Soriano G, Heaney M (2013). Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol, 20, 169-75. https://doi.org/10.1097/MOH.0b013e32835d82fe
  43. Sugimoto M, Yoshida S, Kennedy S, et al (2006). Matrix metalloproteinase-1 and -9 promoter polymorphisms and endometrial carcinoma risk in a Japanese population. J Soc Gynecol Investig, 13, 523-9.
  44. Szczudlik P, Borratynska A (2010). Association between the-1562 C/T MMP-9 polymorphism and cerebrovascular disease in a Polish population. Neurol Neurochir Pol, 44, 350-7.
  45. Tefferi A, Vainchenker W (2011). Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol, 29, 573-82. https://doi.org/10.1200/JCO.2010.29.8711
  46. Thorgeirsson UP, Lindsay CK, Cottam DW, Gomez DE (1994). Tumor invasion, proteolysis and angiogenesis. J Neuro Oncol, 18, 89-103. https://doi.org/10.1007/BF01050415
  47. Travaglino E, Benatti C, Malcovati L, et al (2008). Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol, 80, 216-26. https://doi.org/10.1111/j.1600-0609.2007.01012.x
  48. Vairaktaris E, Vassiliou S, Nkenke E, et al (2008). A metalloproteinase-9 polymorphism which affects its expression is associated with increased risk for oral squamous cell carcinoma. Eur J Surg Oncol, 34, 450-5. https://doi.org/10.1016/j.ejso.2007.03.024
  49. Vasku A, Goldbergova M, Izakovicova Holla L, et al (2004). A haplotype constituted of four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) is associated with coronary triple-vessel disease. Matrix Biol, 22, 585-91. https://doi.org/10.1016/j.matbio.2003.10.004
  50. Wadleigh M, Tefferi A (2010). Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J Hematol, 91, 174-9. https://doi.org/10.1007/s12185-010-0529-5
  51. Wagenaar-Miller RA, Gorden L, Matrisian LM (2004). Matrix metalloproteinases in colorectal cancer: is it worth talking about?. Cancer Metastasis Rev, 23, 119-35. https://doi.org/10.1023/A:1025819214508
  52. Wang J, Warzecha D, Wilcken D, Wang XL (2001). Polymorphism in the gelatinase B gene and the severity of coronary arterial stenosis. Clin Sci (Lond), 101, 87-92. https://doi.org/10.1042/CS20000317
  53. Wang Y, Fang S, Wei L, et al (2005). No association between the C-1562T polymorphism in the promoter of matrix metalloproteinase-9 gene and non-small cell lung carcinoma. Lung Cancer, 49, 155-61. https://doi.org/10.1016/j.lungcan.2005.04.006
  54. Woo M, Park K, Nam J, Kim JC (2007). Clinical implications of matrix metalloproteinase-1, -3, -7, -9, -12, and plasminogen activator inhibitor-1 gene polymorphisms in colorectal cancer. J Gastroenterol Hepatol, 22, 1064-70. https://doi.org/10.1111/j.1440-1746.2006.04424.x
  55. Wu CY, Wu MS, Chen YJ, et al (2007). Clinicopathological significance of MMP-2 and TIMP-2 genotypes in gastric cancer. Eur J Cancer, 43, 799-808. https://doi.org/10.1016/j.ejca.2006.10.022
  56. Xiaoping M, YuAC (2003). Functional polymorphism in the matrix metalloproteinase-2 gene promoter (1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer Res, 63, 3987-90.
  57. Yang TF, Guo L, Wang Q (2014). Meta-analysis of associations between four polymorphisms in the matrix metalloproteinases gene and gastric cancer risk. Asian Pac J Cancer Prev, 15, 1263-7. https://doi.org/10.7314/APJCP.2014.15.3.1263
  58. Yari K, Rahimi Z, Moradi MT, Rahimi Z (2014). The MMP-2-735 C allele is a risk factor for susceptibility to breast cancer. Asian Pac J Cancer Prev, 15, 6199-203. https://doi.org/10.7314/APJCP.2014.15.15.6199
  59. Yu C, Zhou Y, Miao X, et al (2004). Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer. Cancer Res, 64, 7622-8. https://doi.org/10.1158/0008-5472.CAN-04-1521
  60. Yu XF, Han ZC (2006). Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol, 21, 519-31.
  61. Zhang B, Ye S, Herrmann SM, et al (1999). Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation, 99, 1788-94. https://doi.org/10.1161/01.CIR.99.14.1788
  62. Zhang B, Henney A, Eriksson P, et al (1999). Genetic variation at the matrix metalloproteinase-9 locus on chromosome 20q12.2-13.1. Hum Genet, 105, 418-23. https://doi.org/10.1007/s004390051124
  63. Zhou Y, Yu C, Miao X, et al (2005). Functional haplotypes in the promoter of matrix metalloproteinase-2 and lung cancer susceptibility. Carcinogenesis, 26, 1117-21. https://doi.org/10.1093/carcin/bgi057

피인용 문헌

  1. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms vol.16, pp.12, 2015, https://doi.org/10.7314/APJCP.2015.16.12.5013
  2. Acquired JAK-2 V617F Mutational Analysis in Pakistani Patients with Essential Thrombocythemia vol.16, pp.16, 2015, https://doi.org/10.7314/APJCP.2015.16.16.7327
  3. Clinico-Hematological Profile and Risk Stratification in Patients with Essential Thrombocythemia: Experience from Pakistan vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7659
  4. JAK-2 V617F Mutational Analysis in Primary Idiopathic Myelofibrosis: Experience from Southern Pakistan vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7889
  5. Primary Idiopathic Myelofibrosis: Clinico-Epidemiological Profile and Risk Stratification in Pakistani Patients vol.16, pp.18, 2016, https://doi.org/10.7314/APJCP.2015.16.18.8629
  6. Somatic JAK-2 V617F Mutational Analysis in Polycythemia Rubra Vera: a Tertiary Care Center Experience vol.17, pp.3, 2016, https://doi.org/10.7314/APJCP.2016.17.3.1053
  7. Clinico-Epidemiological Profile of Patients with Polycythaemia Rubra Vera - a Five Year Experience from a Tertiary Care Center vol.17, pp.3, 2016, https://doi.org/10.7314/APJCP.2016.17.3.1531