참고문헌
- Balboa E, Duran G, Lamas MJ, et al (2010). Pharmacogenetic analysis in neoadjuvant chemoradiation for rectal cancer: high incidence of somatic mutations and their relation with response. Pharmacogenomics, 11, 747-61. https://doi.org/10.2217/pgs.10.51
- Begg CB, Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088-101. https://doi.org/10.2307/2533446
- Borchiellini D, Etienne-Grimaldi MC, Thariat J, et al (2012). The impact of pharmacogenetics on radiation therapy outcome in cancer patients. A focus on DNA damage response genes. Cancer Treat Rev, 38, 737-59. https://doi.org/10.1016/j.ctrv.2012.02.004
- Bouzourene H, Bosman FT, Seelentag W, et al (2002). Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer, 94, 1121-30. https://doi.org/10.1002/cncr.10327
- Camma C, Giunta M, Fiorica F, et al (2000). Preoperative radiotherapy for resectable rectal cancer: A meta-analysis. JAMA, 284, 1008-15. https://doi.org/10.1001/jama.284.8.1008
- Cecchin E, Agostini M, Pucciarelli S, et al (2010). Tumor response is predicted by patient genetic profile in rectal cancer patients treated with neo-adjuvant chemo-radiotherapy. Pharmacogenomics J, 11, 214-26.
- Cheng XD, Lu WG, Ye F, et al (2009). The association of XRCC1 gene single nucleotide polymorphisms with response to neoadjuvant chemotherapy in locally advanced cervical carcinoma. J Exp Clin Cancer Res, 28, 91. https://doi.org/10.1186/1756-9966-28-91
- DerSimonian R, Kacker R (2007). Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials, 28, 105-14. https://doi.org/10.1016/j.cct.2006.04.004
- DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
- Egger M, Davey Smith G, Schneider M, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
- Gordon MA, Gil J, Lu B, et al (2006). Genomic profiling associated with recurrence in patients with rectal cancer treated with chemoradiation. Pharmacogenomics, 7, 67-88. https://doi.org/10.2217/14622416.7.1.67
- Grimminger PP, Brabender J, Warnecke-Eberz U, et al (2010). XRCC1 gene polymorphism for prediction of response and prognosis in the multimodality therapy of patients with locally advanced rectal cancer. J Surg Res, 164, 61-6. https://doi.org/10.1016/j.jss.2010.08.002
- Hoeijmakers JH (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366-74. https://doi.org/10.1038/35077232
- Hu-Lieskovan S, Vallbohmer D, Zhang W, et al (2011). EGF61 polymorphism predicts complete pathologic response to cetuximab-based chemoradiation independent of KRAS status in locally advanced rectal cancer patients. Clin Cancer Res, 17, 5161-9. https://doi.org/10.1158/1078-0432.CCR-10-2666
- Jemal A, Siegel R, Xu J, et al (2010). Cancer statistics. CA Cancer J Clin, 60, 277-300. https://doi.org/10.3322/caac.20073
- Kapiteijn E, Marijnen CA, Nagtegaal ID, et al (2001). Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med, 345, 638-46. https://doi.org/10.1056/NEJMoa010580
- Kerns SL, Ostrer H, Rosenstein BS (2014). Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov, 4, 155-65. https://doi.org/10.1158/2159-8290.CD-13-0197
- Kockerling F, Reymond MA, Altendorf-Hofmann A, et al (1998). Influence of surgery on metachronous distant metastases and survival in rectal cancer. J Clin Oncol, 16, 324-9.
- Lamas MJ, Duran G, Gomez A, et al (2012). X-ray crosscomplementing group 1 and thymidylate synthase polymorphisms might predict response to chemoradiotherapy in rectal cancer patients. Int J Radiat Oncol Biol Phys, 82, 138-44. https://doi.org/10.1016/j.ijrobp.2010.09.053
- Mahimkar MB, Samant TA, Kannan S, et al (2012). Polymorphisms in GSTM1 and XPD genes predict clinical outcome in advanced oral cancer patients treated with postoperative radiotherapy. Mol Carcinog, 51, 94-103. https://doi.org/10.1002/mc.21868
- Mandard AM, Dalibard F, Mandard JC, et al (1994). Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer, 73, 2680-6. https://doi.org/10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C
- Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.
- Masson M, Niedergang C, Schreiber V, et al (1998). XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol, 18, 3563-71. https://doi.org/10.1128/MCB.18.6.3563
- Metzger R, Warnecke-Eberz U, Alakus H, et al (2012). Neoadjuvant radiochemotherapy in adenocarcinoma of the esophagus: ERCC1 gene polymorphisms for prediction of response and prognosis. J Gastrointest Surg, 16, 26-34. https://doi.org/10.1007/s11605-011-1700-x
- Rajput A, Bullard Dunn K (2007). Surgical management of rectal cancer. Semin Oncol, 34, 241-9. https://doi.org/10.1053/j.seminoncol.2007.03.005
- Read TE, McNevin MS, Gross EK, et al (2001). Neoadjuvant therapy for adenocarcinoma of the rectum: tumor response and acute toxicity. Dis Colon Rectum, 44, 513-22. https://doi.org/10.1007/BF02234323
- Rodel C, Martus P, Papadoupolos T, et al (2005). Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol, 23, 8688-96. https://doi.org/10.1200/JCO.2005.02.1329
- Roh MS, Colangelo LH, O'Connell MJ, et al (2009). Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol, 27, 5124-30. https://doi.org/10.1200/JCO.2009.22.0467
- Sauer R, Becker H, Hohenberger W, et al (2004). Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med, 351, 1731-40. https://doi.org/10.1056/NEJMoa040694
- Shen MR, Jones IM, Mohrenweiser H (1998). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res, 58, 604-8.
- Szkandera J, Absenger G, Liegl-Atzwanger B, et al (2013). Common gene variants in RAD51, XRCC2 and XPD are not associated with clinical outcome in soft-tissue sarcoma patients. Cancer Epidemiol, 37, 1003-9. https://doi.org/10.1016/j.canep.2013.10.003
- Terrazzino S, Agostini M, Pucciarelli S, et al (2006). A haplotype of the methylenetetrahydrofolate reductase gene predicts poor tumor response in rectal cancer patients receiving preoperative chemoradiation. Pharmacogenet Genomics, 16, 817-24. https://doi.org/10.1097/01.fpc.0000230412.89973.c0
- Thompson LH, West MG (2000). XRCC1 keeps DNA from getting stranded. Mutat Res, 459, 1-18. https://doi.org/10.1016/S0921-8777(99)00058-0
- Vecchio FM, Valentini V, Minsky BD, et al (2005). The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys, 62, 752-60. https://doi.org/10.1016/j.ijrobp.2004.11.017
- Wood RD, Mitchell M, Sgouros J, et al (2001). Human DNA repair genes. Science, 291, 1284-9. https://doi.org/10.1126/science.1056154
- Yu Z, Chen J, Ford BN, et al (1999). Human DNA repair systems: an overview. Environ Mol Mutagen, 33, 3-20. https://doi.org/10.1002/(SICI)1098-2280(1999)33:1<3::AID-EM2>3.0.CO;2-L