DOI QR코드

DOI QR Code

Synthesis of Al-Doped ZnO by Microwave Assisted Hydrothermal Method and its Optical Property

마이크로파 수열합성법을 이용한 알루미늄이 도핑된 산화아연 합성 및 그 광학적 특성

  • Hyun, Mi-Ho (Department of Engineering Chemistry, Chungbuk National University) ;
  • Kang, Kuk-Hyoun (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
  • 현미호 (충북대학교 공과대학 공업화학과) ;
  • 강국현 (충북대학교 공과대학 공업화학과) ;
  • 이동규 (충북대학교 공과대학 공업화학과)
  • Received : 2014.09.03
  • Accepted : 2015.02.12
  • Published : 2015.02.28

Abstract

Metal oxide semiconductors have been applied in several areas, such as solar cells, sensor, optical elements and displays, due to the high surface area, unique electrical and optical characteristics. Zinc oxide among the metal oxide has excellent physicochemical properties. Zinc oxide is a n-type semiconductor with a wide direct transition band gap of 3.37 eV at room temperature and large exciton binding energy of 60 meV. Cation-doped zinc oxide studies were conducted to complement the electrical and optical characteristics. In this paper, Al-doped ZnO was synthesized by hydrothermal synthesis using microwaves. ZnO was synthesized by adjusting the precursor ratio and using different dopants. The optimal ZnO synthesis conditions for crystal shape and optical properties were determined. The optical properties of aluminum doped zinc oxide were then examined by SEM, XRD, PL, UV-vis absorbance spectrum, and EDS.

금속 산화물 반도체는 독특한 전기 광학적 특성, 높은 표면적 등으로 인해 태양전지, 센서, 광소자 및 디스플레이 등 여러 분야에 걸쳐 응용되고 있다. 금속 산화물 가운데 우수한 물리 화학적 특성을 가지는 산화아연은 3.37 eV의 넓은 밴드갭 에너지와 60 meV의 큰 엑시톤 결합에너지를 갖는 n-형 반도체로서 산화아연에 양이온을 도핑하여 전기 광학적 특성을 보완하는 연구가 진행되고 있다. 본 연구는 알루미늄이 도핑 된 산화아연을 마이크로파 수열합성법으로 합성하였다. 전구체의 종류와 몰 비 등의 반응 변수를 조절하여 최적의 결정형상과 광학적 특성을 갖는 산화아연을 합성하였으며, 알루미늄을 도핑하여 광학적 특성 변화를 시도하였다. 합성된 입자는 SEM, XRD, PL, UV-Vis 분광기 및 EDS 등의 기기분석을 통해 광학적, 물리 화학적 특성을 확인하였다.

Keywords

References

  1. D. C. Look, J. W. Hemsky, J. R. Sizelove, "Residual Native Shallow Donor in ZnO", Physical Review Letters, 82, pp. 2552-2555, 1999. DOI: http://dx.doi.org/10.1103/PhysRevLett.82.2552
  2. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, "Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells", Angew. Chem. Int Ed, 120, 13, pp. 2436-2440, 2008. DOI: http://dx.doi.org/10.1002/ange.200704919
  3. H. Zhang, D. YangT, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, "Controllable Growth of ZnO Nanostructures by Citric Acid Assisted Hydrothermal Process", Materials Letters, 59, 13, pp. 1696-1700, 2005. DOI: http://dx.doi.org/10.1016/j.matlet.2005.01.056
  4. Z. Liu, Q. Zhang, Y. Li, H. Wangb, "Solvothermal synthesis, photoluminescence and photocatalytic properties of pencil-like ZnO microrods", Journal of Physics and Chemistry of Solids, 73, 5, pp. 651-655. 2012. DOI: http://dx.doi.org/10.1016/j.jpcs.2012.01.003
  5. R. Elilarassi, G. Chandrasekaran, "Microstructural and photoluminescence properties of Co-doped ZnO films fabricated using a simple solution growth method", Materials Sciencein Semiconductor Processing, 14, 2, pp. 179-183, 2011. DOI: http://dx.doi.org/10.1016/j.mssp.2010.11.001
  6. T. Sahoo, S. K. Tripathy, Y. T. Yu, H. K. Ahn, D. C. Shin, I. H. Lee, "Morphology and crystal quality investigation of hydrothermally synthesized ZnO micro-rods", Materials Research Bulletin, 43, 8, pp. 2060-2068, 2008. DOI: http://dx.doi.org/10.1016/j.materresbull.2007.09.011
  7. M. K. Tsaia, C. C. Huanga, Y. C. Leea, C. S. Yangb, H. C. Yub, J. W. Leec, S. Y. Hud, C. H. Chene, "A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating", Journal of Luminescence, 132, 1, pp. 226-230. 2012. DOI: http://dx.doi.org/10.1016/j.jlumin.2011.08.008
  8. K. H. Kang, D. K. Lee, "Synthesis and Characteristics of Magnesium Hydroxide using Microwave", K. J. Met. Mater., 51, 1, pp. 77-82, 2012. https://doi.org/10.3365/KJMM.2013.51.1.077
  9. S. Makhluf, R. Dror, Y. Abramovich, R. Jelinek, A. Gedanken, "Microwave-Assisted synthesis of Nanocrystalline MgO and its use as a bacteriocide", Adv. Funct. Mater, 15, 10, pp. 1708-1715, 2005. DOI: http://dx.doi.org/10.1002/adfm.200500029
  10. B. Liu, H. C. Zeng "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm", J. of American Chemical Societym, 125, 15, pp. 4430-4431, 2003. DOI: http://dx.doi.org/10.1021/ja0299452
  11. N. F. Hamedani, F. Farzaneh, "Synthesis of ZnO Nanocrystals with Hexagonal (Wurtzite) Structure in Water Using Microwave Irradiation", J. Sci. I. R. Iran, 17, 3, pp. 231-234, 2006.
  12. Z. Zhu, D. Yang, H. Liu "Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances", Advanced Powder Technology, 22, 4, pp. 493-497, 2011. DOI: http://dx.doi.org/10.1016/j.apt.2010.07.002
  13. B. O. Park, K. H. Ko, and J. H. Lee, "Electrical and optical properties of ZnO transparent conducting films by the sol-gel method", J. cryst. Growth, 247, 1, pp. 119-125, 2003. https://doi.org/10.1016/S0022-0248(02)01907-3
  14. K. H. Kang, J. S. Choi, J. H. Lee, D. K. L, "Synthesis and Characterizations of Manganese and Iron Dopped Titania Pigment", J. of Korean Oil Chemists' Soc., 29, 3, pp. 393-401, 2012.
  15. R. Romeo, D. Leinen, E. A. Dachiele, J. R. Ramos-Barrado, F. Martin, "The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis", Thin Solid Films, 515, 4, pp. 1942-1949, 2006. DOI: http://dx.doi.org/10.1016/j.tsf.2006.07.152
  16. M. Mazilua, N. Tigaua, V. Musata "Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate", Optical Materials, 34, 11, pp. 1833-1838, 2012. DOI: http://dx.doi.org/10.1016/j.optmat.2012.05.010
  17. W. W. Guo, T. M. Liu, L. Huang, H. J. Zhang, Q. Zhou, W. Zeng, "HMT assisted hydrothermal synthesis of various ZnO nanostructures: Structure, growth and gas sensor properties", Physica E, 44, 3, pp. 680-685, 2011. DOI: http://dx.doi.org/10.1016/j.physe.2011.11.008
  18. Z. Chen,L. Gao, "A facile route to ZnO nanorod arrays using wet method", Jouranl of Crystal Growth, 293, 2, pp. 522-527, 2006. DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.05.082
  19. R. Elilarassin, G. Chandrasekaran, "Microstructural and phtolumin- scence properties of Co-doped ZnO films fabricated using a simple solution growth method", Mat. Sci. Semicon. proc., 14, 2, pp. 179-183, 2011. https://doi.org/10.1016/j.mssp.2010.11.001
  20. M. H. Carlberg, V. Chirita, E. P. Munger, "Defects and energy accommodation in epitaxial sputter deposited Mo/W superlattices studied by molecular dynamics", Thin Solid Films, 317, 1, pp. 10-13, 1998. DOI: http://dx.doi.org/10.1016/S0040-6090(97)00653-6
  21. R. Elilarassin, G. Chandrasekaran, "Microstructural and phtolumin- scence properties of Co-doped ZnO films fabricated using a simple solution growth method", Mat. Sci. Semicon. proc., 14, 2, pp. 179-183, 2011. https://doi.org/10.1016/j.mssp.2010.11.001
  22. M. Wanga, K. E. Lee, S. H. Hahn, E. J. K, S. Kim, J. S. Chung, E. W. Shin, C. Park "Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films" Materials Letters, 61, 4, pp. 1181-1121, 2007.