DOI QR코드

DOI QR Code

Improved Therapeutic Profiles of PLA2-Free Bee Venom Prepared by Ultrafiltration Method

  • Lee, Hyunkyoung (College of Veterinary Medicine, Gyeongsang National University) ;
  • Pyo, Min-Jung (College of Veterinary Medicine, Gyeongsang National University) ;
  • Bae, Seong Kyeong (College of Veterinary Medicine, Gyeongsang National University) ;
  • Heo, Yunwi (College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Choul Goo (Chung Jin Biotech Co., Ltd., Hanyang University Business Center) ;
  • Kang, Changkeun (College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Euikyung (College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2014.10.14
  • Accepted : 2014.11.26
  • Published : 2015.03.31

Abstract

Bee venom (BV) has long been used in traditional Eastern and Western medicine for chronic inflammation, pain and skin therapy. Human exposure to BV, however, often causes unwanted adverse effects and is even fatal in some cases. Phospholipase $A_2$ ($PLA_2$) of BV is now suspected to play a key role in these adverse effects. We investigated the potential use of $PLA_2$-free bee venom (PBV) as a replacement for BV in cosmetic products. PBV prepared by molecular weight cut-off ultrafiltration exhibits a superior profile in comparison with regular BV, by inhibiting elastase activity and suppressing the induction of nitric oxide (NO) and metalloproteinase-9 (MMP-9), while retaining the effects of cell proliferation and protection against ultraviolet B (UVB)-induced damage in human dermal fibroblast cells. PBV thus appears to be more promising than BV as a cosmetic ingredient with a reduced potential for adverse reactions in the recipient.

Keywords

References

  1. Son, D.J., Lee, J.W., Lee, Y.H., Song, H.S., Lee, C.K. and Hong, J.T. (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 115, 246-270. https://doi.org/10.1016/j.pharmthera.2007.04.004
  2. Han, S.M., Lee, K.G. and Pak, S.C. (2013) Effects of cosmetics containing purified honeybee (Apis mellifera L.) venom on acne vulgaris. J. Integr. Med., 11, 320-326. https://doi.org/10.3736/jintegrmed2013043
  3. Park, H.J., Lee, S.H., Son, D.J., Oh, K.W., Kim, K.H., Song, H.S., Kim, G.J., Oh, G.T., Yoon, D.Y. and Hong, J.T. (2004) Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF-${\kappa}B$ through interaction with the p50 subunit. Arthritis Rheum., 50, 3504-3515. https://doi.org/10.1002/art.20626
  4. Kang, S.S., Pak, S.C. and Choi, S.H. (2002) The effect of whole bee venom on arthritis. Am. J. Chin. Med., 30, 73-80. https://doi.org/10.1142/S0192415X02000089
  5. Kwon, Y.B., Lee, H.J., Han, H.J., Mar, W.C., Kang, S.K., Yoon, O.B., Beitz, A.J. and Lee, J.H. (2002) The water-soluble fraction of bee venom produces antinociceptive and antiinflammatory effects on rheumatoid arthritis in rats. Life Sci., 71, 191-204. https://doi.org/10.1016/S0024-3205(02)01617-X
  6. Liu, X., Chen, D., Xie, L. and Zhang, R. (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas invivo. J. Pharm. Pharmacol., 54, 1083-1089. https://doi.org/10.1211/002235702320266235
  7. Orsolic, N., Sver, L., Verstovsek, S., Terzic, S. and Basic, I. (2003) Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon, 41, 861-870. https://doi.org/10.1016/S0041-0101(03)00045-X
  8. Mustafa, F.B., Ng, F.S., Nguyen, T.H. and Lim, L.H. (2008) Honeybee venom secretory phospholipase A2 induces leukotriene production but not histamine release from human basophils. Clin. Exp. Immunol., 151, 94-100.
  9. Chang, Y.H. and Bliven, M.L. (1979) Anti-arthritic effect of bee venom. Agents Actions, 9, 205-211. https://doi.org/10.1007/BF02024736
  10. Lee, J.D., Kim, S.Y., Kim, T.W., Lee, S.H., Yang, H.I., Lee, D.I. and Lee, Y.H. (2004) Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. Am. J. Chin. Med., 32, 361-367. https://doi.org/10.1142/S0192415X04002016
  11. Zurier, R.B., Mitnick, H., Bloomgarden, D. and Weissmann, G. (1973) Effect of bee venom on experimental arthritis. Ann. Rheum. Dis., 32, 466-470. https://doi.org/10.1136/ard.32.5.466
  12. Billingham, M.E., Morley, J., Hanson, J.M., Shipolini, R.A. and Vernon, C.A. (1973) Letter: An anti-inflammatory peptide from bee venom. Nature, 245, 163-164. https://doi.org/10.1038/245163a0
  13. Kim, J.K., Kim, Y., Na, K.M., Surh, Y.J. and Kim, T.Y. (2007) [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radical Res., 41, 603-614. https://doi.org/10.1080/10715760701209896
  14. Nichols, J.A. and Katiyar, S.K. (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res., 302, 71-83. https://doi.org/10.1007/s00403-009-1001-3
  15. Fisher, G.J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S. and Voorhees, J.J. (2002) Mechanisms of photoaging and chronological skin aging. Arch. Dermatol., 138, 1462-1470.
  16. Cannell, R.J., Kellam, S.J., Owsianka, A.M. and Walker, J.M. (1988) Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Med., 54, 10-14. https://doi.org/10.1055/s-2006-962319
  17. Kim, H.G., Shrestha, B., Lim, S.Y., Yoon, D.H., Chang, W.C., Shin, D.J., Han, S.K., Park, S.M., Park, J.H., Park, H.I., Sung, J.M., Jang, Y., Chung, N., Hwang, K.C. and Kim, T.W. (2006) Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW264.7 macrophage cells. Eur. J. Pharmacol., 545, 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
  18. Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R. and Albini, A. (2001) Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer, 91, 822-832. https://doi.org/10.1002/1097-0142(20010215)91:4<822::AID-CNCR1070>3.0.CO;2-G
  19. Bucki, R., Pastore, J.J., Randhawa, P., Vegners, R., Weiner, D.J. and Janmey, P.A. (2004) Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob. Agents Chemother., 48, 1526-1533. https://doi.org/10.1128/AAC.48.5.1526-1533.2004
  20. Salthun-Lassalle, B., Hirsch, E.C., Wolfart, J., Ruberg, M. and Michel, P.P. (2004) Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J. Neurosci., 24, 5922-5930. https://doi.org/10.1523/JNEUROSCI.5668-03.2004
  21. Lee, K.G., Cho, H.J., Bae, Y.S., Park, K.K., Choe, J.Y., Chung, I.K., Kim, M., Yeo, J.H., Park, K.H., Lee, Y.S., Kim, C.H. and Chang, Y.C. (2009) Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-alpha expression. J. Ethnopharmacol., 123, 15-21. https://doi.org/10.1016/j.jep.2009.02.044
  22. Fineschi, S., Cozzi, F., Burger, D., Dayer, J.M., Meroni, P.L. and Chizzolini, C. (2007) Anti-fibroblast antibodies detected by cell-based ELISA in systemic sclerosis enhance the collagenolytic activity and matrix metalloproteinase-1 production in dermal fibroblasts. Rheumatology (Oxford), 46, 1779-1785. https://doi.org/10.1093/rheumatology/kem241
  23. Berman, M.B. (1994) Regulation of corneal fibroblast MMP-1 secretion by cytochalasins. Cornea, 13, 51-57. https://doi.org/10.1097/00003226-199401000-00009

Cited by

  1. Mori folium inhibits interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators by suppressing the activation of NF-κB and p38 MAPK in SW1353 human chondrocytes vol.37, pp.2, 2016, https://doi.org/10.3892/ijmm.2015.2443
  2. Inhibits IL-1β-Induced Matrix Metalloproteinases and Inflammatory Mediators Production in SW1353 Human Chondrocytes by Suppressing NF-κB and MAPK Activation vol.76, pp.8, 2015, https://doi.org/10.1002/ddr.21283
  3. In Vitro and In Vivo Anti-Allergic and Anti-Inflammatory Effects of eBV, a Newly Developed Derivative of Bee Venom, through Modulation of IRF3 Signaling Pathway in a Carrageenan-Induced Edema Model vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0168120
  4. An ethanol extract of Aster yomena (Kitam.) Honda inhibits lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages vol.11, pp.1, 2017, https://doi.org/10.5582/bst.2016.01217
  5. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae vol.13, pp.4, 2017, https://doi.org/10.1007/s13273-017-0045-2
  6. Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.094
  7. Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide-stimulated macrophages and zebrafish vol.89, pp.1 suppl, 2017, https://doi.org/10.1590/0001-3765201720160836
  8. Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2016.272