DOI QR코드

DOI QR Code

Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method

화학적 환원법으로 제작한 은나노유체의 흡광계수

  • 이승현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김현진 (한국항공대학교 항공우주 및 기계공학부) ;
  • 최태종 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김수빈 (한국항공대학교 항공우주 및 기계공학부) ;
  • 강예준 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김동진 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교)
  • Received : 2015.03.13
  • Accepted : 2015.03.17
  • Published : 2015.03.31

Abstract

In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

Keywords

References

  1. S. U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles", Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, eds., ASME, New York, FED-231/MD-66, 1995, pp. 99-105.
  2. J.-H. Lee, S.-H. Lee, C. J. Choi, S. P. Jang and S. U. S. Choi, "A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids", International Journal of Micro-Nano Scale Transport, Vol. 1, 2010, pp. 269-322. https://doi.org/10.1260/1759-3093.1.4.269
  3. T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten and R. A. Taylor, "Nanofluid-based Direct Absorption Solar Collector", Journal of Renewable and Sustainable Energy, Vol. 2, No. 3, 2010. p. 033102. https://doi.org/10.1063/1.3429737
  4. E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco and F. Francini, "Carbon Nanohorns-based Nanofluids as Direct Sunlight Absorbers", Optics Express, Vol. 18, No. 5, 2010, pp. 5179-5187. https://doi.org/10.1364/OE.18.005179
  5. L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P. D. Ninni, S. Barison, C. Pagura, F. Agresti and D. Jafrancesco, "Absorption and Scattering Properties of Carbon Nanohorn-based Nanofluids for Direct Sunlight Absorbers", Nanoscale Research Letters, Vol. 6, No. 1, 2011, p. 282. https://doi.org/10.1186/1556-276X-6-282
  6. R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian and R. Prasher, "Nanofluid optical property characterization: towards efficient direct absorption solar collectors", Nanoscale Research Letters, Vol. 6, No. 1, 2011, p. 225. https://doi.org/10.1186/1556-276X-6-225
  7. J. A. Eastman, S. U. S. Choi, W. Yu and L. J. Thompson, "Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles", Applied Physics Letters, Vol. 78, No. 6, 2001, pp. 718-720. https://doi.org/10.1063/1.1341218
  8. H. E. Patel, T. Sundararajan and S. K. Das, "An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids," Journal of Nanoparticle Research, Vol. 12, No. 3, 2010, pp. 1015-1031. https://doi.org/10.1007/s11051-009-9658-2
  9. S.-H. Lee, Y.-J. Park, T. J. Choi and S. P. Jang, Efficiency of a Direct Absorption Solar Collector using Ag Nanofluids Synthesized by Chemical Reduction Method, Journal of the Korean Solar Energy Society, Vol. 34, No. 5, 2014, pp. 65-72. https://doi.org/10.7836/kses.2014.34.5.065
  10. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films", Philosophical Trans. Royal Society of London Series A, Vol. 203, 1904, pp. 385-420. https://doi.org/10.1098/rsta.1904.0024
  11. C. F. Bohren and D. R. Huffman, "Absorption and Scattering of Light by Small Particles", John Wiley and Sons, New York, 1998, pp. 135-136.
  12. S.-H. Lee and S. P. Jang, "Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes", International Journal of Heat and Mass Transfer, 2013, Vol. 67, pp. 930-935. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.094
  13. S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz and L. Mulfinger, "Synthesis and Study of Silver Nanoparticles", Journal of Chemical Education, Vol. 84, No. 2, 2007, pp. 322-325. https://doi.org/10.1021/ed084p322
  14. H. Jiang, Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications (Ph.D Thesis), Georgia Institute of Technology, Georgia, 2008.
  15. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 m wavelength region", Applied Optics, Vol. 12, No. 3, 1973, pp. 555-563. https://doi.org/10.1364/AO.12.000555
  16. T. P. Otanicar, P. E. Phelan and J. S. Golden, "Optical properties of liquids for direct absorption solar thermal energy system", Solar Energy, Vol. 83, No. 7, 2009, pp. 969-977. https://doi.org/10.1016/j.solener.2008.12.009
  17. E. D. Palik, "Handbook of Optical Constant of Solids," Academic Press. New York, 1985.