DOI QR코드

DOI QR Code

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia (Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University) ;
  • Ni, Kuikui (Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University) ;
  • Pang, Huili (Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University) ;
  • Wang, Yanping (Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University) ;
  • Cai, Yimin (Animal Physiology and Nutrition Division, National Institute of Livestock and Grassland Science) ;
  • Jin, Qingsheng (Institute of Crops and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences)
  • 투고 : 2014.06.12
  • 심사 : 2014.11.04
  • 발행 : 2015.05.01

초록

A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

키워드

참고문헌

  1. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  2. Benitez, L. B., K. Caumo, A. Brandelli, and M. B. Rott. 2011. Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga. Parasitol. Res. 108:687-691. https://doi.org/10.1007/s00436-010-2114-5
  3. Cai, Y. and S. Kumai. 1994. The proportion of lactate isomers in farm silage and the influence of inoculation with lactic acid bacteria on the proportion of L-lactate in silage. Jpn. J. Zootech. Sci. 65:788-795.
  4. Cai, Y., S. Ohmomo, M. Ogawa, and S. Kumai. 1997. Effect of NaCl-tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage. J. Appl. Microbiol. 83:307-313. https://doi.org/10.1046/j.1365-2672.1997.00229.x
  5. Cai, Y., Y. Benno, M. Ogawa, S. Ohmomo, S. Kumai, and K. Nakase. 1998. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage. Appl. Environ. Microbiol. 64:2982-2987.
  6. Cai, Y. 1999. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 82:2466-2471. https://doi.org/10.3168/jds.S0022-0302(99)75498-6
  7. Chaudhari, A. A. and S. Kariyawasam. 2014. An experimental infection model for Escherichia coli egg peritonitis in layer chickens. Avian Dis. 58:25-33. https://doi.org/10.1637/10536-032213-Reg.1
  8. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71:1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  9. Eitan, B. D., O. H. Shapiro, N. Siboni, and A. Kushmaro. 2006. Advantage of using inosine at the 3' Termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72:6902-6906. https://doi.org/10.1128/AEM.00849-06
  10. Ennahar, S., T. Sashihara, K. Sonomoto, and A. Ishizaki. 2000. Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiol. Rev. 24:85-106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x
  11. Ennahar, S., Y. Cai, and Y. Fujita. 2003. Phylogenetic diversity of Lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 69:444-451. https://doi.org/10.1128/AEM.69.1.444-451.2003
  12. Hata, T., R. Tanaka, and S. Ohmomo. 2010. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food Microbiol. 137:94-99. https://doi.org/10.1016/j.ijfoodmicro.2009.10.021
  13. Hellal, A., L. Amrouche., Z. Ferhat, and F. Laraba. 2012. Characterization of bacteriocin from Lactococcus isolated from traditional Algerian dairy products. Ann. Microbiol. 62: 177-185. https://doi.org/10.1007/s13213-011-0244-3
  14. Karska-Wysocki, B., M. Bazo, and W. Smoragiewicz. 2010. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol. Res. 165:674-686. https://doi.org/10.1016/j.micres.2009.11.008
  15. Kozaki, M., T. Uchimura, and S. Okada. 1992. Experimental Manual for Lactic Acid Bacteria. Asakurasyoten, Tokyo, Japan.
  16. Kraus, E., H. H. Kiltz, and U. F. Femfert. 1976. The specificity of proteinase K against oxidized insulin B chain. Hoppe. Seylers. Z. Physiol. Chem. 357:233-237. https://doi.org/10.1515/bchm2.1976.357.1.233
  17. Lin, C., K. K. Bolsen, B. E. Brent, and D. Y. C. Fung. 1992. Epiphytic lactic acid bacteria succession during the preensiling and ensiling periods of alfalfa and maize. J. Appl. Bacteriol. 73:375-387. https://doi.org/10.1111/j.1365-2672.1992.tb04992.x
  18. Magnusson, J. and J. Schnurer. 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67:1-5. https://doi.org/10.1128/AEM.67.1.1-5.2001
  19. Muck, R. E. 1989. Initial bacterial numbers on lucerne prior to ensiling. Grass Forage Sci. 44:19-25. https://doi.org/10.1111/j.1365-2494.1989.tb01905.x
  20. Pang, H., M. Zhang, G. Qin, Z. Tan, Z. Li, Y. Wang, and Y. Cai. 2011. Identification of lactic acid bacteria isolated from corn stovers. Anim. Sci. J. 82:642-653. https://doi.org/10.1111/j.1740-0929.2011.00894.x
  21. Pang, H., Z. Tan, G. Qin, Y. Wang, Z. Li, Q. Jin, and Y. Cai. 2012. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau. J. Microbiol. 50:63-71. https://doi.org/10.1007/s12275-012-1284-5
  22. Rawlings, N. D. and A. J. Barrett. 1994. Families of serine peptidases. Method Enzymol. 244:19-61. https://doi.org/10.1016/0076-6879(94)44004-2
  23. Riley, M. A. 2009. Bacteriocins, biology, ecology, and evolution. Encyclopedia of Microbiology, 3rd Ed. (Ed S. Moselio). Academic Press, Massachusetts. USA. pp. 32-44.
  24. Saitou, H. and K. I. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. 72:619-629. https://doi.org/10.1016/0926-6550(63)90386-4
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  26. Sharma, P. and R. C. Sihag. 2013. Pathogenicity test of bacterial and fungal fish pathogens in Cirrihinus mrigala infected with EUS disease. Pak. J. Biol. Sci.16:1204-1207.
  27. Simova, E. D., D. M. Beshkova, M. P. Angelov, Zh. P. Dimitrov. 2008. Bacteriocin production by strain Lactobacillus delbrueckii ssp. bulgaricus BB18 during continuous prefermentation of yogurt starter culture and subsequent batch coagulation of milk. J. Ind. Microbiol. Biotechnol. 35:559-567. https://doi.org/10.1007/s10295-008-0317-x
  28. Smaoui, S., L. Elleuch, W. Bejar, I. Karray-Rebai, I. Ayadi, B. Jaouadi, F. Mathieu, H. Chouayekh, S. Bejar, and L. Mellouli. 2010. Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635. Appl. Biochem. Biotechnol. 162:1132-1146. https://doi.org/10.1007/s12010-009-8821-7
  29. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  30. Tohno, M., H. Kobayashi, M. Nomura, M. Kitahara, M. Ohkuma, R. Uegaki, and Y. Cai. 2012. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim. Sci. J. 83:111-120. https://doi.org/10.1111/j.1740-0929.2011.00923.x
  31. Todorov, S. D., H. Prevost, M. Lebois, X. Dousset, J. G. LeBlanc, and B. D. G. M. Franco. 2011. Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) - From isolation to application: Characterization of a bacteriocin. Food Res. Int. 44:1351-1363. https://doi.org/10.1016/j.foodres.2011.01.027
  32. Torriani, S., G. E. Felis, and F. Dellaglio. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67:3450-3454. https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  33. Weinberg, Z. G., R. E. Muck, P. J. Weimer, Y. Chen, and M. Gamburg. 2004. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol. 118:1-9. https://doi.org/10.1385/ABAB:118:1-3:001
  34. Yang, E., L. Fan, Y. Jiang, C. Doucette, and S. Fillmore. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express. 2:48. https://doi.org/10.1186/2191-0855-2-48

피인용 문헌

  1. Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe vol.30, pp.6, 2016, https://doi.org/10.5713/ajas.16.0578
  2. Influence of Whey Protein Concentrate on the Production of Antibacterial Peptides Derived from Fermented Milk by Lactic Acid Bacteria pp.1573-3904, 2017, https://doi.org/10.1007/s10989-017-9596-2
  3. growing on the Tibetan Plateau and its application for silage preparation at low temperature pp.13645072, 2019, https://doi.org/10.1111/jam.14110
  4. The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling vol.125, pp.3, 2018, https://doi.org/10.1111/jam.13914
  5. Foodborne Pathogens in Artificially Contaminated Fermented Tomato Juices vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/6937837
  6. The Influence of Supplementation of Feed with Lactobacillus reuteri L2/6 Biocenol on Intestinal Microbiota of Conventional Mice vol.61, pp.3, 2015, https://doi.org/10.1515/fv-2017-0024
  7. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-14052-1
  8. Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option vol.2018, pp.2, 2018, https://doi.org/10.3389/fsufs.2018.00050
  9. Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways vol.20, pp.9, 2019, https://doi.org/10.3390/ijms20092073
  10. Effect of chicken egg yolk immunoglobulins on serum biochemical profiles and intestinal bacterial populations in early‐weaned piglets vol.103, pp.5, 2019, https://doi.org/10.1111/jpn.13129
  11. Isolation and identification of lactic acid bacteria in fresh plants and in silage from Opuntia and their effects on the fermentation and aerobic stability of silage vol.157, pp.9, 2019, https://doi.org/10.1017/s0021859620000143
  12. Effect of gamma irradiated Lactobacillus bacteria as an edible coating on enhancing the storage of tomato under cold storage conditions vol.13, pp.1, 2015, https://doi.org/10.1080/16878507.2020.1723886
  13. Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes vol.11, pp.None, 2015, https://doi.org/10.3389/fmicb.2020.00040
  14. Effects and interaction of dietary electrolyte balance and citric acid on the intestinal function of weaned piglets vol.98, pp.5, 2015, https://doi.org/10.1093/jas/skaa106
  15. Interactions between host and gut microbiota in domestic pigs: a review vol.11, pp.3, 2020, https://doi.org/10.1080/19490976.2019.1690363
  16. Peptide-Based Formulation from Lactic Acid Bacteria Impairs the Pathogen Growth in Ananas Comosus (Pineapple) vol.10, pp.5, 2020, https://doi.org/10.3390/coatings10050457
  17. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality vol.129, pp.2, 2015, https://doi.org/10.1111/jam.14604
  18. Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage vol.10, pp.9, 2015, https://doi.org/10.3390/ani10091575
  19. Selection of Lactic Acid Bacteria from Alfalfa Silage and Its Effects as Inoculant on Silage Fermentation vol.10, pp.11, 2015, https://doi.org/10.3390/agriculture10110518
  20. Effects of Dietary Supplementation of Lactobacillus delbrueckii on Gut Microbiome and Intestinal Morphology in Weaned Piglets vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.692389
  21. Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM‐I‐4785 vol.10, pp.1, 2021, https://doi.org/10.1002/mbo3.1153
  22. Reactive Extraction as an Intensifying Approach for the Recovery of Organic Acids from Aqueous Solution: A Comprehensive Review on Experimental and Theoretical Studies vol.66, pp.4, 2015, https://doi.org/10.1021/acs.jced.0c00405
  23. Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage vol.11, pp.7, 2015, https://doi.org/10.3390/agriculture11070590
  24. Biopreservative application of bacteriocins obtained from samples Ictalurus punctatus and fermented Zea mays vol.15, pp.8, 2015, https://doi.org/10.5897/ajmr2017.8443
  25. Lacto-fermented polypeptides integrated with edible coatings for mango (Mangifera indica L.) bio-preservation vol.134, pp.None, 2015, https://doi.org/10.1016/j.foodcont.2021.108708