DOI QR코드

DOI QR Code

Molecular Characterization and Expression Analysis of the Peroxisome Proliferator Activated Receptor Delta (PPARδ) Gene before and after Exercise in Horse

  • Cho, Hyun-Woo (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Shin, Sangsu (Life and Industry Convergence Research Institute, College of Natural Resource and Life Science, Pusan National University) ;
  • Park, Jeong-Woong (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Choi, Jae-Young (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Kim, Nam-Young (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Lee, Woon-Kyu (College of Medicine, Inha University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, HanKyong National University) ;
  • Song, Ki-Duk (Genomic Informatics Center, HanKyong National University) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Life Sciences, Pusan National University)
  • Received : 2014.07.29
  • Accepted : 2014.10.27
  • Published : 2015.05.01

Abstract

While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta ($PPAR{\delta}$) gene and analyzed the expression of $PPAR{\delta}$ during exercise. $PPAR{\delta}$ is a known regulator of ${\beta}$-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse $PPAR{\delta}$ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse $PPAR{\delta}$. Horse $PPAR{\delta}$ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, $PPAR{\delta}$ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of $PPAR{\delta}$ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse $PPAR{\delta}$ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.

Keywords

References

  1. Angione, A. R., C. Jiang, D. Pan, Y. X. Wang, and S. Kuang. 2011. PPARdelta regulates satellite cell proliferation and skeletal muscle regeneration. Skelet. Muscle 1:33. https://doi.org/10.1186/2044-5040-1-33
  2. Belfiore, A., M. Genua, and R. Malaguarnera. 2009. PPAR-gamma agonists and their effects on IGF-I receptor signaling: Implications for cancer. PPAR Res. 2009:ID830501.
  3. Berger, J. and D. E. Moller. 2002. The mechanisms of action of PPARs. Annu. Rev. Med. 53:409-435. https://doi.org/10.1146/annurev.med.53.082901.104018
  4. Bookout, A. L., Y. Jeong, M. Downes, R. T. Yu, R. M. Evans, and D. J. Mangelsdorf. 2006. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789-799. https://doi.org/10.1016/j.cell.2006.06.049
  5. Bustamante, C. D., A. Fledel-Alon, S. Williamson, R. Nielsen, M. T. Hubisz, S. Glanowski, D. M. Tanenbaum, T. J. White, J. J. Sninsky, R. D. Hernandez, D. Civello, M. D. Adams, M. Cargill, and A. G. Clark. 2005. Natural selection on proteincoding genes in the human genome. Nature 437:1153-1157. https://doi.org/10.1038/nature04240
  6. Krey, G., H. Keller, A. Mahfoudi, J. Medin, K. Ozato, C. Dreyer, and W. Wahli. 1993. Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids. J. Steroid Biochem. Mol. Biol. 47:65-73. https://doi.org/10.1016/0960-0760(93)90058-5
  7. Lee, C. H., P. Olson, A. Hevener, I. Mehl, L. W. Chong, J. M. Olefsky, F. J. Gonzalez, J. Ham, H. Kang, J. M. Peters, and R. M. Evans. 2006. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA. 103:3444-3449. https://doi.org/10.1073/pnas.0511253103
  8. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(- Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  9. Luquet, S., J. Lopez-Soriano, D. Holst, A. Fredenrich, J. Melki, M. Rassoulzadegan, and P. A. Grimaldi. 2003. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 17:2299-2301. https://doi.org/10.1096/fj.03-0269fje
  10. Mahoney, D. J., G. Parise, S. Melov, A. Safdar, and M. A. Tarnopolsky. 2005. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 19:1498-1500. https://doi.org/10.1096/fj.04-3149fje
  11. Park, K. D., J. Park, J. Ko, B. C. Kim, H. S. Kim, K. Ahn, K. T. Do, H. Choi, H. M. Kim, S. Song, S. Lee, S. Jho, H. S. Kong, Y. M. Yang, B. H. Jhun, C. Kim, T. H. Kim, S. Hwang, J. Bhak, H. K. Lee, and B. W. Cho. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13:473. https://doi.org/10.1186/1471-2164-13-473
  12. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  13. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  14. Wahli, W., O. Braissant, and B. Desvergne. 1995. Peroxisome proliferator activated receptors: Transcriptional regulators of adipogenesis, lipid metabolism and more. Chem. Biol. 2:261-266. https://doi.org/10.1016/1074-5521(95)90045-4
  15. Wang, Y. X., C. L. Zhang, R. T. Yu, H. K. Cho, M. C. Nelson, C. R. Bayuga-Ocampo, J. Ham, H. Kang, and R. M. Evans. 2004. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2(10):e294. https://doi.org/10.1371/journal.pbio.0020294
  16. Zeng, L., Y. Geng, M. Tretiakova, X. Yu, P. Sicinski, and T. G. Kroll. 2008. Peroxisome proliferator-activated receptor-delta induces cell proliferation by a cyclin E1-dependent mechanism and is up-regulated in thyroid tumors. Cancer Res. 68:6578-6586. https://doi.org/10.1158/0008-5472.CAN-08-0855

Cited by

  1. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.17.0409
  2. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses vol.30, pp.5, 2017, https://doi.org/10.5713/ajas.16.0776
  3. Equine performance genes and the future of doping in horseracing vol.9, pp.9, 2017, https://doi.org/10.1002/dta.2198
  4. Characterization of gene expression and genetic variation of horse ERBB receptor feedback inhibitor 1 in Thoroughbreds vol.31, pp.3, 2018, https://doi.org/10.5713/ajas.17.0370
  5. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions vol.53, pp.3, 2015, https://doi.org/10.1111/evj.13320
  6. Regulation of toll-like receptors expression in muscle cells by exercise-induced stress vol.34, pp.10, 2021, https://doi.org/10.5713/ab.20.0484
  7. Role of genes related to performance and reproduction of Thoroughbreds in training and breeding - A review vol.69, pp.4, 2015, https://doi.org/10.1556/004.2021.00045
  8. Role of genes related to performance and reproduction of Thoroughbreds in training and breeding - A review vol.69, pp.4, 2015, https://doi.org/10.1556/004.2021.00045