DOI QR코드

DOI QR Code

A study on Lifetime Evaluation of High-power Cables Based on Temperature Changes

온도변화에 따르는 고전력 케이블의 수명 변화 연구

  • Received : 2015.02.15
  • Accepted : 2015.04.10
  • Published : 2015.04.30

Abstract

In order to meet increasing power demands, electrical capacity of equipment for power transfers should become larger accordingly. The equipment used for producing and delivering high-voltage power is also required to operate with a high degree of reliability. The stable operation of power equipment is a necessity, not an option. The current through the power cable, the only device to deliver high power, generates a Joule heat, which causes a deteriorating process on the cable system. The XLPE cable is manufactured in such a manner that it can operate for 30 years at $90^{\circ}$, but there is no guarantee that each cable will reach its projected lifetime of 30 years. In this paper, we have measured the temperatures of nine power cables in operation, based on the theory of cable longevity. In order to study the relationship between temperature and longevity, we have devised a new set of equipment and installed it at Korea Western Power Co., Ltd. located in Taean.

증가하는 전력 수요량을 충족시키기 위하여 송전 설비의 전기적인 용량이 커져야 한다. 고전력의 전기를 생산하고 전달하는 설비들은 대규모화될 뿐만이 아니라 높은 신뢰성으로써 동작하여야 한다. 따라서 전기설비가 안정상태에서 동작해야 한다는 것은 매우 중요한 과제이다. 고전력을 전달하기 위한 유일한 수단으로 체택되고 있는 케이블에서 전류에 의하여 줄 열이 발생하며, 열에 의하여 케이블 시스템의 열화가 발생한다. XLPE 케이블의 경우 $90^{\circ}$에서 30년 수명을 보장한다는 조건으로 제작, 설치 및 운영 되고 있으나, 실제 30 년 사용한 시점에서 수명이 종료될 것이라는 보장이 현재로서는 없는 상태이다. 이 논문에서 기존의 수명 이론을 바탕으로 활선 상태의 6.6 kV 케이블 9회선의 온도를 측정하고, 케이블의 온도와 수명의 상관관계를 파악하기 위하여 우리가 제작하여 (주)서부발전에 설치하여 운영하고 있는 장치를 소개한다.

Keywords

References

  1. J. S. Lee, "Design and Structural Analysis of Electric Saver Box," Journal of the Korea Academia-Industrial Cooperation Society Vol. 13, No. 6 pp. 2435-2440, 2012. https://doi.org/10.5762/KAIS.2012.13.6.2435
  2. J. McCalley, O. Oluwaseyi, C. Singh, K. Jiang "System Protection Schemes: Limitations, Risks, and Management," Final Project Report, Power Systems Engineering Research Center, Iowa State University, 2010.
  3. K. H. Um, K. W. Lee, "Study of Lifetime Evaluation Based on Insulation Resistance Following the Failure Rate Acceleration Factor of the Arrhenius Equation", Journal of the The Institute of Internet, Broadcasting and Communication, vol.14, no. 5, pp. 231-236, Oct., 2014. https://doi.org/10.7236/JIIBC.2014.14.5.231
  4. P. M. Anderson, B. K. LeReverend, "Industry experience with special protection schemes" IEEE Transactions on Power Systems, vol. 11, Issue: 3 pp. 1166-1179, 1996. https://doi.org/10.1109/59.535588
  5. F. J. Wyant, S. P. Nowlen, "Cable Insulation Resistance Measurements Made During Cable Fire Tests" Sandia National Laboratories, June 2002.
  6. Nelson, W., "Accelerated Life Testing - Step-Stress Models and Data Analyses". IEEE Transactions on Reliability, vol. R-29, Issue 2, pp. 103-108 June 1980. https://doi.org/10.1109/TR.1980.5220742
  7. C. Raymond., "Physical Chemistry for the Biosciences. Sausalito", pp. 311-347, University Science Books. 2005.
  8. G. C. Philip,"A Generalized EOQ Model for Items with Weibull Distribution Deterioration", pp. 159-162, University Science Books. 2005.
  9. K. W. Lee, K. H. Um, "A Study on the Deterioration Process of 22kV Power Cables in Operation", Journal of the The Institute of Internet, Broadcasting and Communication, vol.13, no. 3, pp. 127-133, Jun 2013. https://doi.org/10.7236/JIIBC.2013.13.3.127
  10. O. Petruk, R. Szewczyk, J. Salach, M. Nowicki, "Digitally Controlled Current Transformer with Hall Sensor", Advances in Intelligent Systems and Computing(Springer) pp.641-647, 2014.

Cited by

  1. Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.6666