DOI QR코드

DOI QR Code

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2

3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보)

  • Kim, Young-Suk (School of Mechanical Engineering, Kyungpook National University) ;
  • Do, Van-Cuong (Graduate School, Kyungpook National University) ;
  • Ahn, Dae-Chul (Graduate School, Kyungpook National University)
  • Received : 2015.02.10
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

3차원 구조 알루미늄 판재(엠보싱 판재)는 표면적이 증가되어 방열효과가 뛰어나고 가공경화에 의해 굽힘강성 증가효과가 있으므로 자동차 열차단 부품에 널리 사용된다. 그러나 엠보싱 판재는 평판의 판재와 비교하면 기계적 특성이 상이하고 또한 3차원 형상으로 인해 프레스 가공에 있어서 많은 제약이 따른다. 본 연구에서는 프레스 가공공정을 대신하여 최근 신제품의 디자인 검증과 시생산에 널리 채용되고 있는 점진성형공정을 대상으로 엠보싱된 판재의 성형특성을 평가하였다. 본 연구에서 채용한 공구형상을 이용한 사각 원뿔의 점진성형 결과, 엠보싱된 판재의 경우가 평판의 경우보다 더 큰 기울기를 갖는 사각 원뿔을 파단없이 성형할 수 있음을 보였다. 이는 점진성형공정에서 CNC 공구의 이동경로(tool path)하에서 공구가 엠보싱 판재의 산과 골을 눌러 복원시키면서 재료의 소성변형을 증가시키기 때문이다. 또한 공구의 이동경로가 내향 경로보다 외향 경로인 경우가 보다 큰 기울기의 제품을 성형할 수 있지만 스프링 백의 발생으로 제품의 표면품질은 열세에 있음을 보였다.

Keywords

References

  1. Y.S. Kim, K.S. Kim, N.C. Kwon, Press formabilities of aluminum sheets for autobody application, J. Korean Soc. Auto. Eng., Vol.2, No.1, pp.73-83, 1994.
  2. Y.S. Kim et al., Evaluation apparatus and method for insulation efficiency of the heat protector of the automobile, Korea Patent, No.10-1004202, 2010
  3. http://automotive.arcelormittal.com/europe/products/alusi/alusi_specific_applications/EN
  4. Y.S.Kim, J.H. Cho, Van-Cuong Do, D.W.Shin, Evaluation of mechanical properties and springback for 3D-structured aluminum sheet - part I, J. Korea Academia-Ind. Coop. Soc., Vol.16, No.2, pp.921-926, 2015.
  5. H.Guler, R.Ozcan, Effects of the rotary embossing process on mechanical properties in aluminum alloy 1050 sheets, Met. Mater. Int., Vol.18, No.2, pp.225-230, 2012. DOI: http://dx.doi.org/10.1007/s12540-012-2004-8
  6. T. Abe, T. Yasota, Y. Nonaka, S. Saka, T. Kuwabara, Forming simulation of emboss formation by roll forming, Proc. 208 Japanese Spring Conf. Technol. Plasticity, pp.253-254, 2008
  7. M. Melnykowycz, D. Caprioli, Development of aluminum heat shield designs using optistructuct and Hyperform, 4th European HyperWorks Tech. Conf., Versailles, France, 2010.
  8. H. Iseki, K. Kato, S. Sakamoto, Flexible and incremental sheet metal bulging using a path-controlled spherical roller, Trans Japan Soc. Mech. Engng., Vol. 58-554, pp 3147-3155, 1992 (in Japanese).
  9. W.C. Emmens, G. Sebastiani, A.H. van den Boogaard, The technology of incremental sheet forming- A brief review of the history, J. Mater. Process. Technol., Vol.210, pp. 981-997, 2010. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2010.02.014
  10. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Annals- Manuf. Technol., Vol.54(2), pp.88-114, 2005. https://doi.org/10.1016/S0007-8506(07)60021-3
  11. Y.H. Kim, J.J. Park, Effect of process parameters on formability in incremental forming of sheet metal, J. Mater. Process. Technol., Vol.130-131, pp. 42-46, 2002. DOI: http://dx.doi.org/10.1016/S0924-0136(02)00788-4
  12. T.J. Kim, D.Y. Yang, Improvement of formability for the incremental sheet metal forming process, Int. J. Mech. Sci., Vol.42, pp. 1271-1286, 2001. DOI: http://dx.doi.org/10.1016/S0020-7403(99)00047-8
  13. M. Azaouzi, N. Lebaal, Tool path optimization for single point incremental sheet forming using response surface method, Simul. Model. Pract. Theory, Vol.24, pp.49-58, 2012. DOI: http://dx.doi.org/10.1016/j.simpat.2012.01.008
  14. K. Jackson, A. Allood, The mechanics of incremental sheet forming, J. Mater. Process. Technol., Vol.209, pp. 1158-1174, 2009. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2008.03.025
  15. B. Taleb Araghi, A. Gottmann, M. Bambach, G. Hirt, G. Bergweiler, J. Diettrich, M. Steiners, A. Saeed-Akbari, Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production, Prod. Engng., Vol.5(4), pp.393-404, 2011. DOI: http://dx.doi.org/10.1007/s11740-011-0325-y
  16. A. Gottmann, J. Diettrich. G. Bergweile. M. Bambach. G. Hirt. P. Loosen. R. Poprawe, Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts, Prod. Eng. Res. Devel. Vol.5(3), 2011, pp.263-271. DOI: http://dx.doi.org/10.1007/s11740-011-0299-9
  17. F. Han, J.H. Mo, H.W. Qi, R.F. Long, X.H. Cui, Z.W. Li, Springback prediction for incremental sheet forming based on FEM-PSONN technology, Trans. Nonferrous Metals Soc. China, Vol.23(4), pp.1061-1071, 2013. DOI: http://dx.doi.org/10.1016/S1003-6326(13)62567-4
  18. Z, Jettler, H. Rezai, G. Hirt, Springback compensation for incremental sheet metal forming applications, LS-DYNA Anwenderforum, Bamberg, C-1-21-C-1-32, 2008.
  19. M.S. Khan, F. Coenen, C. Dixon, S.El-Salhi, M. Penalva, A. Rivero, An intelligent process model: predicting springback in single point incremental forming, Int J Adv Manuf Technol, 2014, be in print. DOI: http://dx.doi.org/10.1007/s00170-014-6431-1
  20. J. Jeswiet, E. Hagan, A. Szekeres, Forming parameters for incremental forming of aluminum sheet metal, IMECHE part B, J. Engng. Manuf., Vol.216, pp.1367-1371, 2002. DOI: http://dx.doi.org/10.1243/095440502320405458
  21. D.T. Nguyen, Y.S. Kim, A numerical study on establishing the forming limit curve and indicating the formability of complex shape in incremental sheet forming processes, Int. J. Prec. Engng. Manuf., Vol.14, No.12, pp. 2087-2093, 2013. DOI: http://dx.doi.org/10.1007/s12541-013-0283-8
  22. D.T. Nguyen, S.H. Yang, D.W. Jung, T.H. Choi, Y.S. Kim, Incremental sheet metal forming: numerical simulation and rapid prototyping process to make an automobile white-body, Steel Research Int., Vol.82 (7), pp.795-805, 2011. DOI: http://dx.doi.org/10.1002/srin.201000284
  23. K. Kitazawa, A. Wakabayashi, K. Murata, K. Yaejima, J. Light Metals, Vol.46(2), pp.65-70, 1996 (in Japanese). DOI: http://dx.doi.org/10.2464/jilm.46.65