DOI QR코드

DOI QR Code

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal

탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구

  • Park, Hanbai (Korea Interfacial Science & Engineering Institute) ;
  • Woo, Dal-Sik (Korea Interfacial Science & Engineering Institute)
  • 박한배 (한국계면공학연구소 물환경부서) ;
  • 우달식 (한국계면공학연구소 물환경부서)
  • Received : 2014.10.01
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

본 연구는 급격한 수질변화에 따른 현장 적용에 적합한 응집제를 선정하고, 응집제 별 최적 주입량을 찾기 위해 aluminium sulfate, poly aluminum chloride, poly aluminum silicate chloride를 이용하여 Jar-Test와 Pilot-Test의 검증으로 실험 하였다. 분석 항목은 탁도, TOC, pH로 제거율을 측정하였다. 실험 결과를 바탕으로 PASC의 경우 기존 응집제 인 Alum이나 PAC 보다 최적 주입량 (15 mg/L)이 상대적으로 적었으며, 제거율도 높게 나타남을 확인할 수 있었다. Jar-Test에서는 원수 탁도 3-20 NTU 범위에서 응집제(PASC)의 최적 주입량을 주입하였을 때, 탁도 제거율(80%)과 TOC 제거율(89%)이 가장 높았으며, Pilot-Test에서는 원수 탁도 3.6-27 NTU 범위에서 응집제 최적 주입량을 주입하였을 때 탁도 제거율(82%)과 TOC 제거율(88%)을 확인할 수 있었다. 따라서 본 연구 결과를 바탕으로 응집제의 제거 효과는 원수 탁도와 TOC가 높아질수록 상승하는 경향을 확인할 수 있었다.

Keywords

References

  1. Wang, Z.P., Zhang, Z., Lin, Y.J., Deng. N.S., Tao, T. & Zhuo, K. 'Landfill leachate treatment by a coagulation-photooxidation process", J. Hazardous Material, 95 (1/2), 153-159, 2002. DOI: http://dx.doi.org/10.1016/S0304-3894(02)00116-4
  2. Bratby J. "Coagulation and Flocculation in Water and wastewater Treatment", IWA Publishing, London, Seattle, 2006.
  3. Gregor JE, Nokes CJ, Fenton E, "Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation", Water Research, 31, 2949-2958, 1997. DOI: http://dx.doi.org/10.1016/S0043-1354(97)00154-1
  4. A. Amirtharajah and C. R. O'Melia.(1990). "Coagulation processes: destabilization, mixing and flocculation, Water Quality and Treatment", American Water Works Association, 4th ed., New York: McGraw Hill, 1990.
  5. S Sinha, Y Yoon, G Amy, J Yoon "Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes", Chemosphere 57 (9), 1115-1122, 2004 DOI: http://dx.doi.org/10.1016/j.chemosphere.2004.08.012
  6. MRWA (Editor) "Coagulation and Flocculation Process Fundamentals" 2003. MRWA: Minnesota Rural Water Association. Available From: (Accessed: http://www.mrwa.com Sept.,21, 2014).
  7. Wenshan G., Huu-Hao N., Saravanamuthu V., Fonny D., Tien T. N., Rupak A., "Effect of different flocculants on short-term performance of submerged membrane bioreactor", Separation and Purification Technology Volume 70, Issue 3, Pages 274-279, 2010. https://doi.org/10.1016/j.seppur.2009.10.003
  8. B.Y. Gao, Q.Y. Yue, B.J. Wang,"The chemical species distribution and transformation of polyaluminum silicate chloride coagulant" Chemosphere, 46 (6), pp. 809-813, 2002. DOI: http://dx.doi.org/10.1016/S0045-6535(01)00180-1
  9. B. Y. Gao, Q. Y. Yue, Y. Wang "Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewater treatment", Separation and Purification Technology, Volume 56, Issue 2, Pages 225-230, 2007. DOI: http://dx.doi.org/10.1016/j.seppur.2007.02.003