DOI QR코드

DOI QR Code

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method

In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구

  • Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University) ;
  • Park, Ju Young (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 이봄이 (공주대학교 신소재공학부 고분자공학전공) ;
  • 박주영 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2015.03.16
  • Accepted : 2015.04.13
  • Published : 2015.06.10

Abstract

Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.

단량체로 디페닐카보네이트를 이용한 세 종류의 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체, 즉 이축압출기를 이용한 PC/GO 복합체(PC/GO), 촉매를 이용한 in-situ PC/GO 복합체(PC/GO-cat.), 그리고 -COCl로 표면 처리된 GO-COCl을 이용한 in-situ PC/GO 복합체(PC/GO-COCl)를 용융중합을 통해 제조하였다. PC/GO 복합체의 합성은 $3000cm^{-1}$$1750cm^{-1}$ 근처에서 나타나는 C-H 그리고 C=O 신축진동 피크를 통해 확인하였다. DSC와 TGA 분석 결과에 따르면, PC/GO와 PC/GO-cat.과 비교할 때, PC/GO-COCl의 유리전이온도가 상대적으로 낮은 값을 나타내었고, PC/GO 복합체의 열안정성이 가장 우세함을 나타내었다. 저장탄성률(G')-손실탄성률(G") 그래프의 기울기는 고분자 용융체의 비균질성의 증가와 함께 감소하는 경향이 있어, GO 분산성을 확인하는데 사용될 수 있다. G'-G" 기울기 결과로부터 PC/GO와 PC/GO-cat. 복합체의 PC 매트릭스 내 GO 분산성이 양호함을 알 수 있고, 이는 원자력현미경 사진을 통해 재확인하였다. PC/GO-COCl의 경우 분산성이 열세한 이유 중 하나는 중합과정에서 -COCl에 의해 분지구조나 가교구조 등이 발생하여 GO의 분산을 방해하기 때문으로 해석할 수 있고, 이는 복합탄성률과 위상차(${\delta}$) 그래프로부터 확인할 수 있었다.

Keywords

References

  1. Y. T. Sung and W. N. Kim, Properties of polymer/carbon nanotube composites, Prospectives of Industrial Chemistry, 9, 37-43 (2006).
  2. S. Yun, H. Im, and J. Kim, Dispersity and electro-conductivity of PU grafted MWCNT/PU composite via simple blending method, Appl. Chem. Eng., 21, 500-504 (2010).
  3. E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschke, Carbon nanofibers for composite applications, Carbon, 42, 1153-1158 (2004). https://doi.org/10.1016/j.carbon.2003.12.043
  4. J.-C. Huang, Carbon black filled conducting polymers and polymer blends, Advances in Polymer Technology, 21, 299-313 (2002). https://doi.org/10.1002/adv.10025
  5. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and P. S. Ruoff, Graphene-based composite materials, Nature, 442, 282-286 (2006). https://doi.org/10.1038/nature04969
  6. P. J. Yoon, D. L. Hunter, and D. R. Paul, Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties, Polymer, 44, 5323-5339 (2003). https://doi.org/10.1016/S0032-3861(03)00528-7
  7. S. J. Choi, K. H. Yoon, I. H. Hwang, C. Y. Lee, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Effect of solvent extraction on the low molecular weight and volatile organic compounds of polycarbonate, Appl. Chem. Eng., 21, 532-536 (2010).
  8. M. Yoonessi and J. R. Gaier, Highly conductive multifunctional graphene polycarbonate nanocomposites, ACS Nano, 12, 7211-7220 (2010).
  9. J. R. Potts, S. Murali, Y. Zhu, X. Zhao, and R. S. Ruoff, Microwave-exfoliated graphite oxide/polycarbonate composites, Macromolecules, 44, 6488-6495 (2011). https://doi.org/10.1021/ma2007317
  10. A. S. Wajid, H. S. T. Ahmed, S. Das, F. Irin, A. F. Jankowski, and M. J. Green, High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties, Macromol. Mater. Eng., 298, 339-347 (2013). https://doi.org/10.1002/mame.201200043
  11. Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Preparation of graphene/polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix, Carbon, 51, 148-155 (2013). https://doi.org/10.1016/j.carbon.2012.08.023
  12. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Angew. Che. Int. Ed., 48, 7752-7777 (2009). https://doi.org/10.1002/anie.200901678
  13. B. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  14. A. Yasmin, J.-J. Luo, and I. M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Compos. Sci. Technol., 66, 1182-1189 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014
  15. S. T. Kim and H. J. Choi, Synthesis and characterization of multi-walled carbon nanotube/poly(methyl methacrylate) composites prepared by in-situ dispersion polymerization, Applied Chemistry, 9, 13-16 (2005).
  16. P. Ding, S. Su, N. Song, S. Tang, Y. Liu, and L. Shi, Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process, Carbon, 66, 576-584 (2014). https://doi.org/10.1016/j.carbon.2013.09.041
  17. B. Shen, W. Zhai, M. Tao, D. Lu, and W. Zheng, Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending, Compos. Sci. Technol., 86, 109-116 (2013). https://doi.org/10.1016/j.compscitech.2013.07.007
  18. D. J. Lohse, S. T. Milner, L. J. Fetters, and M. Xenidou, and M. K. Lyon, Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior, Macromolecules, 35, 3066-3075 (2002). https://doi.org/10.1021/ma0117559