DOI QR코드

DOI QR Code

Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

  • Kim, Mi-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Park, Hyun-Joo (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Su-Ryun (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Choi, Yoon Kyung (Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School) ;
  • Bae, Soo-Kyung (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Bae, Moon-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University)
  • Received : 2015.01.23
  • Accepted : 2015.04.23
  • Published : 2015.07.01

Abstract

The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin- A-induced angiogenesis in vivo and ex vivo. Orexin-A-stimulated endothelial tube formation and chemotactic activity were also blocked in SnPP-treated vascular endothelial cells. Orexin-A treatment increased the expression of nuclear factor erythroid-derived 2 related factor 2 (Nrf2), and antioxidant response element (ARE) luciferase activity, leading to induction of HO-1. Collectively, these findings indicate that HO-1 plays a role as an important mediator of orexin-A-induced angiogenesis, and provide new possibilities for therapeutic approaches in pathophysiological conditions associated with angiogenesis.

Keywords

References

  1. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95:322-327. https://doi.org/10.1073/pnas.95.1.322
  2. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573-585. https://doi.org/10.1016/S0092-8674(00)80949-6
  3. Sutcliffe JG, de Lecea L. The hypocretins: excitatory neuromodulatory peptides for multiple homeostatic systems, including sleep and feeding. J Neurosci Res. 2000;62:161-168. https://doi.org/10.1002/1097-4547(20001015)62:2<161::AID-JNR1>3.0.CO;2-1
  4. Jochem J, Zwirska-Korczala K, Zabielski R, Kato I, Kuwahara A. Cardiovascular effects of centrally acting orexin A in haemorrhage-shocked rats. J Physiol Pharmacol. 2006;57 Suppl 11:115-124.
  5. Tanida M, Niijima A, Shen J, Yamada S, Sawai H, Fukuda Y, Nagai K. Dose-different effects of orexin-A on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats. Exp Biol Med (Maywood). 2006;231:1616-1625. https://doi.org/10.1177/153537020623101006
  6. Kim MK, Park HJ, Kim SR, Choi YK, Shin HK, Jeon JH, Jang HO, Yun I, Bae SK, Bae MK. Angiogenic role of orexin-A via the activation of extracellular signal-regulated kinase in endothelial cells. Biochem Biophys Res Commun. 2010;403:59-65. https://doi.org/10.1016/j.bbrc.2010.10.115
  7. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653-660. https://doi.org/10.1038/nm0603-653
  8. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549-6556. https://doi.org/10.1038/sj.onc.1206816
  9. Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic endogenous novel [corrected] regulators of angiogenesis. Pharmacol Rev. 2007;59:185-205. https://doi.org/10.1124/pr.59.2.3
  10. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  11. Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 GeneAblation and expression. J Am Soc Nephrol. 2000;11:965-973.
  12. Soares MP, Brouard S, Smith RN, Bach FH. Heme oxygenase-1, a protective gene that prevents the rejection of transplanted organs. Immunol Rev. 2001;184:275-285. https://doi.org/10.1034/j.1600-065x.2001.1840124.x
  13. Wagener FA, da Silva JL, Farley T, de Witte T, Kappas A, Abraham NG. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther. 1999;291:416-423.
  14. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, Clinton Webb R, Lee ME, Nabel GJ, Nabel EG. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7:693-698. https://doi.org/10.1038/89068
  15. Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem. 1998;68:121-127. https://doi.org/10.1002/(SICI)1097-4644(19980101)68:1<121::AID-JCB12>3.0.CO;2-K
  16. Park SY, Bae JU, Hong KW, Kim CD. HO-1 induced by cilostazol protects against TNF-${\alpha}$-associated cytotoxicity via a PPAR-${\gamma}$-dependent pathway in human endothelial cells. Korean J Physiol Pharmacol. 2011;15:83-88. https://doi.org/10.4196/kjpp.2011.15.2.83
  17. Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007;204:605-618. https://doi.org/10.1084/jem.20061609
  18. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267:18148-18153.
  19. Sakurai T. Orexin: a link between energy homeostasis and adaptive behaviour. Curr Opin Clin Nutr Metab Care. 2003;6:353-360. https://doi.org/10.1097/00075197-200307000-00001
  20. Heinonen MV, Purhonen AK, Makela KA, Herzig KH. Functions of orexins in peripheral tissues. Acta Physiol (Oxf). 2008;192:471-485. https://doi.org/10.1111/j.1748-1716.2008.01836.x
  21. Kastin AJ, Akerstrom V. Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J Pharmacol Exp Ther. 1999;289:219-223.
  22. Arihara Z, Takahashi K, Murakami O, Totsune K, Sone M, Satoh F, Ito S, Mouri T. Immunoreactive orexin-A in human plasma. Peptides. 2001;22:139-142. https://doi.org/10.1016/S0196-9781(00)00369-7
  23. Sun G, Tian Z, Yao Y, Li H, Higuchi T. Central and/or peripheral immunoreactivity of orexin-A in pregnant rats and women. J Mol Endocrinol. 2006;36:131-138. https://doi.org/10.1677/jme.1.01818
  24. Kitamura E, Hamada J, Kanazawa N, Yonekura J, Masuda R, Sakai F, Mochizuki H. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci Res. 2010;68:154-157. https://doi.org/10.1016/j.neures.2010.06.010
  25. Esmaeili-Mahani S, Vazifekhah S, Pasban-Aliabadi H, Abbasnejad M, Sheibani V. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem Int. 2013;63:719-725. https://doi.org/10.1016/j.neuint.2013.09.022
  26. Brzozowski T, Konturek PC, Sliwowski Z, Drozdowicz D, Burnat G, Pajdo R, Pawlik M, Bielanski W, Kato I, Kuwahara A, Konturek SJ, Pawlik WW. Gastroprotective action of orexin-A against stress-induced gastric damage is mediated by endogenous prostaglandins, sensory afferent neuropeptides and nitric oxide. Regul Pept. 2008;148:6-20. https://doi.org/10.1016/j.regpep.2008.02.003
  27. Dreger H, Westphal K, Weller A, Baumann G, Stangl V, Meiners S, Stangl K. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res. 2009;83:354-361. https://doi.org/10.1093/cvr/cvp107
  28. Dulak J, Deshane J, Jozkowicz A, Agarwal A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation. 2008;117:231-241. https://doi.org/10.1161/CIRCULATIONAHA.107.698316
  29. Lakkisto P, Kyto V, Forsten H, Siren JM, Segersvard H, Voipio-Pulkki LM, Laine M, Pulkki K, Tikkanen I. Heme after myocardial infarction by modulating the expression of HIF-1alpha, SDF-1alpha and VEGF-B. Eur J Pharmacol. 2010;635:156-164. https://doi.org/10.1016/j.ejphar.2010.02.050
  30. Choi YK, Kim CK, Lee H, Jeoung D, Ha KS, Kwon YG, Kim KW, Kim YM. Carbon monoxide promotes VEGF expression by increasing HIF-1alpha protein level via two distinct mechanisms, translational activation and stabilization of HIF-1alpha protein. J Biol Chem. 2010;285:32116-32125. https://doi.org/10.1074/jbc.M110.131284
  31. Sikder D, Kodadek T. The neurohormone orexin stimulates hypoxia-inducible factor-1 activity. Genes Dev. 2007;21:2995-3005. https://doi.org/10.1101/gad.1584307
  32. Wang Z, Liu S, Kakizaki M, Hirose Y, Ishikawa Y, Funato H, Yanagisawa M, Yu Y, Liu Q. Orexin/hypocretin activates calcium-stimulated lysosome v-ATPase pathway. J Biol Chem. 2014;289:31950-31959. https://doi.org/10.1074/jbc.M114.600015
  33. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-293. https://doi.org/10.1016/j.cell.2012.03.017
  34. Kim JH, Choo YY, Tae N, Min BS, Lee JH. The anti-inflammatory effect of 3-deoxysappanchalcone is mediated by inducing heme oxygenase-1 via activating the AKT/mTOR pathway in murine macrophages. Int Immunopharmacol. 2014;22:420-426. https://doi.org/10.1016/j.intimp.2014.07.025
  35. Bussolati B, Mason JC. Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid Redox Signal. 2006;8:1153-1163. https://doi.org/10.1089/ars.2006.8.1153

Cited by

  1. The cytoprotective effect of Rumex Aquaticus Herba extract against hydrogen peroxide-induced oxidative stress in AGS cells vol.39, pp.12, 2015, https://doi.org/10.1007/s12272-016-0863-0
  2. Orexin A Suppresses Oxidized LDL Induced Endothelial Cell Inflammation via MAPK p38 and NF-κB Signaling Pathway : OREXIN A SUPPRESSES ENDOTHELIAL CELL INFLAMMATION vol.70, pp.10, 2015, https://doi.org/10.1002/iub.1890
  3. Effects of Orexin B on Swine Granulosa and Endothelial Cells vol.11, pp.6, 2015, https://doi.org/10.3390/ani11061812
  4. Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity vol.13, pp.11, 2015, https://doi.org/10.3390/cancers13112612