Bismuth Vanadate 기반물분해광전극

  • 이미경 (서울대학교 재료공학부) ;
  • 장호원 (서울대학교 재료공학부)
  • Published : 2015.06.30

Abstract

Keywords

References

  1. D. M. Andoshe, J. M. Jeon, S. Y. Kim, and H. W. Jang. "Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting," Electron. Mater. Lett., 11 323-35 (2015). https://doi.org/10.1007/s13391-015-4402-9
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, "Solar Water Splitting Cells," Chem. Rev., 110 6446-73 (2010). https://doi.org/10.1021/cr1002326
  3. L. Yang, H. Zhou, T. Fan, and D. Zhang, "Semiconductor Photocatalysts for Water Oxidation: Current Status and Challenges," Phys. Chem. Chem. Phys, 16 6810-26 (2014). https://doi.org/10.1039/c4cp00246f
  4. Z. Chen, H. N. Dinh, and E. Miller, "Photoelectrochemical Water Splitting," Springer (2013).
  5. M. S. Prevot, K. Sivula, "Photoelectrochemical Tandem Cells for Solar Water Splitting," J. Phys. Chem. C., 117 17879-93 (2013). https://doi.org/10.1021/jp405291g
  6. Z. F. Huang, L Pan, J. J. Zou, X. Zhang, and L. Wang, "Nanostructured Bismuth Vanadate-based Materials for Solar-energy-driven Water Oxidation: a Review on Recent Progress," Nanoscale, 6 14044-63 (2014). https://doi.org/10.1039/C4NR05245E
  7. Y. Park, K. J. McDonald, and K-. S. Choi, "Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation," Chem. Soc. Rev., 42 2321-37 (2013). https://doi.org/10.1039/C2CS35260E
  8. K. Sayama, A. Nomur, Z. Zou, R. Abe, Y. Abe, and H. Arakawa, "Photoelectrochemical Decomposition of Water on Nanocrystalline $BiVO_4$ Film Electrodes Under Visible Light," Chem. Commun., 2908-09 (2003).
  9. W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, and Z. Zou, "Synthesis, Growth Mechanism and Photoelectroche mical Properties of $BiVO_4$ Microcrystal Electrodes," J. Phys. D:Appl. Phys., 43 405402 (2010). https://doi.org/10.1088/0022-3727/43/40/405402
  10. G. Xi and J. Ye, "Synthesis of Bismuth Vanadate Nanoplates with Exposed {001} Facets and Enhanced Visible-light Photocatalytic Properties," Chem. Commun., 46 1893-95 (2010). https://doi.org/10.1039/b923435g
  11. D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, and C. Li, "Photocatalytic Water Oxidation on $BiVO_4$ with the Electrocatalyst as an Oxidation Co Catalyst: Essential Relations between Electrocatalyst and Photocatalyst," J. Phys. Chem. C., 116 5082-89 (2012). https://doi.org/10.1021/jp210584b
  12. N. Myung, S. Ham, S. Choi, Y. Chae, W. G. Kim, Y. J. Jeon, K. J. Paeng, W. Chanmanee, N. R. Tacconi, and K. Rajeshwar, "Tailoring Interfaces for Electrochemical Synthesis of Semiconductor Films: $BiVO_4$, $Bi_2O_3$, or Composites," J. Phys. Chem. C., 115 7793-800 (2011). https://doi.org/10.1021/jp200632f
  13. J. A. Seabold and K-. S. Choi, "Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst," J. Am. Chem. Soc., 134 2186-92 (2012). https://doi.org/10.1021/ja209001d
  14. H. Yoon, M. G. Mali, J. Y. Choi, M. W. Kim, S. K. Choi, H. Park, S. S. Al-Deyab, M. T. Swihart, A. L. Yarin, and S.S Yoon, "Nanotextured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting," Langmuir, 31 3727-37 (2015). https://doi.org/10.1021/acs.langmuir.5b00486
  15. S. P. Berglund, D. W. Flaherty, N. T. Hahn, A. J. Bard, and C. B. Mullins, "Photoelectrochemical Oxidation of Water Using Nanostructured $BiVO_4$ Films," J. Phys. Chem. C., 115 3794-802 (2011). https://doi.org/10.1021/jp1109459
  16. K-. S Choi, "Shape Effect and Shape Control of Polycrystalline Semiconductor Electrodes for Use in Photoelectrochemical Cells," J. Phys. Chem. Lett., 1 2244-50 (2010). https://doi.org/10.1021/jz100629n
  17. K. J. McDonald and K-. S. Choi, "A New Electrochemical Synthesis Route for a BiOI Electrode and its Conversion to a Highly Efficient Porous $BiVO_4$ Photoanode for Solar Water Oxidation," Energy Environ. Sci., 5 8553-57 (2012). https://doi.org/10.1039/c2ee22608a
  18. G. Li, D. Zhang, and J. C. Yu, "Ordered Mesoporous $BiVO_4$ through Nanocasting: A Superior Visible Light-Driven Photocatalyst," Chem. Mater., 20 3983-92 (2008). https://doi.org/10.1021/cm800236z
  19. S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, "Cobalt-phosphate (Co-Pi) Catalyst Modified Mo-doped $BiVO_4$ Photoelectrodes for Solar Water Oxidation," Energy Environ. Sci., 4 5028-34 (2011). https://doi.org/10.1039/c1ee02444b
  20. S. Eda, M. Fujishima, and H. Tada, "Low Temperature-synthesis of $BiVO_4$ Nanorods Using Polyethylene Glycol as a Soft Template and the Visible-light-activity for Copper Acetylacetonate Decomposition," Appl. Catal. B-Environ., 125 288-93 (2012). https://doi.org/10.1016/j.apcatb.2012.05.038
  21. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic Materials: Possibilities and Challenges," Adv. Mater., 22 229 (2012).
  22. R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, and C. Li, "Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of $BiVO_4$," Nat. Commun., 4 1432 (2012).
  23. R. Li, H. Han, F. Zhang, D. Wang, and C. Li, "Highly Efficient Photocatalysts Constructed by Rational Assembly of Dual-co Catalysts Separately on Different Facets of $BiVO_4$," Energy Environ. Sci., 7 1369-76 (2014). https://doi.org/10.1039/c3ee43304h
  24. S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee, "Heterojunction $BiVO_4$/$WO_3$ Electrodes for Enhanced Photoactivity of Water Oxidation," Energy Environ. Sci., 4 1781-87 (2011). https://doi.org/10.1039/c0ee00743a
  25. P. Chatchai, Y. Murakami, S-. Kishioka, A. Y. Nosaka, and Y. Nosaka, "Efficient Photocatalytic Activity of Water Oxidation over $WO_3$/$BiVO_4$ Composite under Visible Light Irradiation," Electrochimica Acta., 54 1147-52 (2009). https://doi.org/10.1016/j.electacta.2008.08.058
  26. J. Su, L. Guo, N. Bao, and C. A. Grimes, "Nanostructured $WO_3$/$BiVO_4$ Heterojunction Films for Efficient Photoelectrochemical Water Splitting," Nano Lett., 11 1928-33 (2011). https://doi.org/10.1021/nl2000743
  27. P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, "Simultaneously Efficient Light Absorption and Charge Separation in $WO_3$/$BiVO_4$ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation," Nano Lett., 14 1099-105 (2014). https://doi.org/10.1021/nl500022z
  28. X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, and J. H. Park, "Efficient Photoelectrochemical Hydrogen Production from Bismuth Vanadate-decorated Tungsten Trioxide Helix Nanostructures," Nat. Commum., 5 4755 (2014). https://doi.org/10.1038/ncomms5755
  29. Y. Liang, T. Tsubota, L. P. A. Mooij, and R. Krol, "Highly Improved Quantum Efficiencies for Thin Film $BiVO_4$ Photoanodes," J. Phys. Chem. C., 115 17594-98 (2011).
  30. R. Saito, Y. Miseki, and K. Sayama, "Highly Efficient Photoelectrochemical Water Splitting using a Thin Film Photoanode of $BiVO_4$/$SnO_2$/$WO_3$ Multi-composite in a Carbonate Electrolyte," Chem. Commun., 48 3833-35 (2012). https://doi.org/10.1039/c2cc30713h
  31. Mingce, Weimin, and H. Kisch, "Visible Light Induced Photoelectrochemical Properties of n-$BiVO_4$ and n-$BiVO_4$/p-$Co_3O_4$," J. Phys. Chem. C., 112 548-54 (2008). https://doi.org/10.1021/jp075605x
  32. W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, and B. Zou, "Preparation of p-n Junction $Cu_2O$/$BiVO_4$ Heterogeneous Nanostructures with Enhanced Visible-light Photocatalytic Activity," Appl. Catal. B-Environ., 1 134 293-301 (2013). https://doi.org/10.1016/j.apcatb.2013.01.013
  33. Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, "Reducing Graphene Oxide on a Visible-Light $BiVO_4$ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting," J. Phys. Chem. Lett., 1 2607-12 (2010). https://doi.org/10.1021/jz100978u
  34. K. P. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, "Photocatalytic and Photoelectrochemical Water Oxidation over Metal-Doped Monoclinic $BiVO_4$ Photoanodes," ChemSusChem, 5 1926-34 (2012). https://doi.org/10.1002/cssc.201200254
  35. H. Ye, J. Lee, J. S. Jang, and A. J. Bard, "Rapid Screening of $BiVO_4$-Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties," J. Phys. Chem. C., 114 13322-28 (2010). https://doi.org/10.1021/jp104343b
  36. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yua, and Z. Zou, "Solar Hydrogen Generation from Seawater with a Modified $BiVO_4$ Photoanode," Energy Environ. Sci., 4 4046-51 (2011). https://doi.org/10.1039/c1ee01812d
  37. W. J. Jo, J-. W. Jang, K-. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. Parmar, and J. S. Lee, "Phosphate Doping into Monoclinic $BiVO_4$ for Enhanced Photoelectrochemical Water Oxidation Activity," Angew. Chem. Int. Ed., 51 3147-51 (2012). https://doi.org/10.1002/anie.201108276
  38. D. K. Zhong, S. Choi, and D. R. Gamelin, "Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi" Catalyst-Modified W:$BiVO_4$," J. Am. Chem. Soc., 133 18370-77 (2011). https://doi.org/10.1021/ja207348x
  39. H. Ye, H. S. Park, and A. J. Bard, "Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped $BiVO_4$ Photocatalysts by Scanning Electrochemical Microscopy," J. Phys. Chem. C., 115 12464-70 (2011). https://doi.org/10.1021/jp200852c
  40. T. W. Kim, and K-. S. Choi, "Nanoporous $BiVO_4$ Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting," Science, 343 990-94 (2014). https://doi.org/10.1126/science.1246913