DOI QR코드

DOI QR Code

Influence of Stress-strain on the Microstructural Change in the Metallic Glass and Metallic Glass Matrix Composite

  • Kim, Song-Yi (Rare Metals R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, A-Young (Rare Metals R&D Group, Korea Institute of Industrial Technology) ;
  • Oh, Hye-Ryung (Rare Metals R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Min-Ha (Rare Metals R&D Group, Korea Institute of Industrial Technology)
  • Received : 2015.05.30
  • Accepted : 2015.06.18
  • Published : 2015.06.30

Abstract

At room temperature, metallic glasses deform inhomogeneously by strain localization into narrow bands as a result of yielding due to an external force. When shear bands are generated during deformation, often nanocrystals form at the shear bands. Experimental results on the deformation of bulk metallic glass in the current study suggest that the occurrence of nanocrystallization at a shear band implies the loading condition that induces deformation is more triaxial in nature than uniaxial. Under a compressive stress state, the geometrical constraint strain imposed by the stress triaxiality plays a crucial role in the deformation-induced nanocrystallization at the shear bands.

Keywords

References

  1. Abdel-Aal H A (2002) Thermal kinetics of protective oxide layer formation in the dry sliding of metallic tribo-specimens. Tribol. Int. 35, 757-769. https://doi.org/10.1016/S0301-679X(02)00031-2
  2. Agron A S (1979) Plastic deformation in metallic glasses. Acta Metall. 27, 47-58. https://doi.org/10.1016/0001-6160(79)90055-5
  3. Archard J F (1959) The temperature of rubbing surfaces. Wear 2, 438-455. https://doi.org/10.1016/0043-1648(59)90159-0
  4. Bao Y and Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng. Fract. Mech. 72, 1049-1069. https://doi.org/10.1016/j.engfracmech.2004.07.011
  5. Bao Y and Wierzbicki Y (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  6. Boucharat N, Hebert R, Rosner H, Valiev R, and Wilde G (2005) Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation. Scr. Mater. 53, 823-828. https://doi.org/10.1016/j.scriptamat.2005.06.004
  7. Chen H, He Y, Shiflet G J, and Poon S J (1994) Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541-543. https://doi.org/10.1038/367541a0
  8. Chovet C, Desrayaud Ch, and Montheillet F (2002) A mechanical analysis of the plane strain channel-die compression test: friction effects in hot metal testing. Int. J. Mech. Sci. 44, 343-357. https://doi.org/10.1016/S0020-7403(01)00092-3
  9. Christman T, Needleman A, and Suresh S (1989) An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall. 37, 3029-3050. https://doi.org/10.1016/0001-6160(89)90339-8
  10. Conner R D, Johnson W L, Paton N E, and Nix W D (2003) Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904-911. https://doi.org/10.1063/1.1582555
  11. Deng D, Argon A S, and Yip S (1989) Simulation of plastic deformation in a two-dimensional atomic glass by molecular dynamics IV. Phil. Trans. R. Soc. Lond. A 329, 613-640. https://doi.org/10.1098/rsta.1989.0092
  12. Donovan P E (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall. 37, 445-456. https://doi.org/10.1016/0001-6160(89)90228-9
  13. Grebe H A, Pak H R, and Meyers M A (1985) Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. Matall. Trans. A 16, 761-775. https://doi.org/10.1007/BF02814827
  14. Greer A L (1995) Metallic glasses. Science 267, 1947-1953. https://doi.org/10.1126/science.267.5206.1947
  15. Harms U, Shen T D, and Schwarz R B (2002) Thermal conductivity of Pd40Ni40−xCuxP20 metallic glasses. Scr. Mater. 47, 411-414. https://doi.org/10.1016/S1359-6462(02)00160-4
  16. He D, Zhao Q, Wang W H, Che R Z, Liu J, Luo X J, and Wang W K (2002) Pressure-induced crystallization in a bulk amorphous Zr-based alloy. J. Non-Cryst. Solids 297, 84-90. https://doi.org/10.1016/S0022-3093(01)00906-1
  17. Jaeger J C (1942) Moving sources of heat and the temperature at sliding contacts. Proc. R. Soc. NSW. 76, 203-224.
  18. Jiang W H, Pinkerton F E, and Atzmon M (2003) Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation. J. Appl. Phys. 93, 9287-9290. https://doi.org/10.1063/1.1571234
  19. Kim J -J, Choi Y, Suresh S, and Argon A S (2002) Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654-657.
  20. Kramer M J, Sordelet D J, Bastarows A F, Tan X, and Biner S B (2005) Absence of crystallization during cylindrical indentation of a Zr-based metallic glass. J. Non-Cryst. Solids 351, 2159-2165. https://doi.org/10.1016/j.jnoncrysol.2005.06.014
  21. Lee B J, Lee C S, and Lee J C (2003) Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study. Acta Mater. 51, 6233-6240. https://doi.org/10.1016/S1359-6454(03)00446-4
  22. Lee B J, Lee J C, Kim Y C, and Lee S H (2004) Behavior of amorphous materials under hydrostatic pressures: a molecular dynamics simulation study. Met. Mater. Int. 10, 467-474. https://doi.org/10.1007/BF03027350
  23. Lee J K, Bae D H, Yi S, Kim W T, and Kim D H (2004) Effects of Sn addition on the glass forming ability and crystallization behavior in Ni-Zr-Ti-Si alloys. J. Non-Cryst. Solids 333, 212-220. https://doi.org/10.1016/j.jnoncrysol.2003.10.011
  24. Lee M H, Bae D H, Kim D H, Kim W T, Sordelet D J, Kim K B, and Eckert J (2008) Nanocrystallization at shear bands in bulk metallic glass matrix composites. Scripta Mater. 58, 651-654. https://doi.org/10.1016/j.scriptamat.2007.11.032
  25. Lee M H, Kim B S, Kim D H, Ott R T, Sansoz F, and Eckert J (2014) Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite. Philos. Mag. Lett. 94, 351-360. https://doi.org/10.1080/09500839.2014.907509
  26. Lee M H, Lee J K, Kim K T, Thomas J, Das J, Kuhn U, and Eckert J (2009) Deformation-induced microstructural heterogeneity in monolithic Zr44Ti11Cu9.8Ni10.2Be25 bulk metallic glass, Phys. Status Solidi RRL 3, 46-48. https://doi.org/10.1002/pssr.200802242
  27. Lewandowski J J and Greer A L (2006) Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15-18. https://doi.org/10.1038/nmat1536
  28. Lewandowski J J and Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos. Mag. A 82, 3427-3441. https://doi.org/10.1080/01418610208240453
  29. Liu C T, Heatherly L, Horton J A, Easton D S, Carmichael C A, Wright J L, Schneibel J L, Yoo M H, Chen C H, and Inoue A (1998) Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811-1820. https://doi.org/10.1007/s11661-998-0004-6
  30. Lund A C and Schuh C A (2003) Yield surface of a simulated metallic glass. Acta Mater. 51, 5399-5411. https://doi.org/10.1016/S1359-6454(03)00396-3
  31. Pauly S, Lee M H, Kim D H, Kim K B, Sordelet D J, and Eckert J (2009) Crack evolution in bulk metallic glasses. J. Appl. Phys. 106, 103518. https://doi.org/10.1063/1.3259418
  32. Pekarskaya E, Kim C P, and Johnson W L (2001) In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513-2518. https://doi.org/10.1557/JMR.2001.0344
  33. Saida J, Setyawan A D H, Kato H, and Inoue A (2005) Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907. https://doi.org/10.1063/1.2081124
  34. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407-415. https://doi.org/10.1016/0001-6160(77)90232-2
  35. Spaepen F (2006) Metallic glasses: Must shear bands be hot. Nat. Mater. 5, 7-8. https://doi.org/10.1038/nmat1552
  36. Steif P S (1983) Ductile versus brittle behavior of amorphous metals. J. Mech. Phys. Solids 31, 359-388. https://doi.org/10.1016/0022-5096(83)90005-4
  37. Teng X, Weirzbicki T, Hiermaier S, and Rohr I (2005) Numerical prediction of fracture in the Taylor test. Int. J. Solids Struct. 42, 2929-2948. https://doi.org/10.1016/j.ijsolstr.2004.09.039
  38. Vaidyanathan R, Dao M, Ravichandran G, and Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781-3789. https://doi.org/10.1016/S1359-6454(01)00263-4
  39. Yang B, Morrison M L, Liaw P K, Buchanan R A, Wang G, Liu C T, and Denda M (2005) Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904. https://doi.org/10.1063/1.1891302
  40. Ye F and Lu K (1999) Pressure effect on crystallization kinetics of an Al- La-Ni amorphous alloy. Acta Mater. 47, 2449-2454. https://doi.org/10.1016/S1359-6454(99)00104-4
  41. Zhang Z F, He G, Eckert J, and Schultz L (2003) Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505. https://doi.org/10.1103/PhysRevLett.91.045505