DOI QR코드

DOI QR Code

Optimization of Extrusion Process Conditions to Increase the Corn Fiber Gum and Soluble Arabinoxylan Yield from Corn Fiber

옥수수 섬유질로부터 검과 수용성 아라비노자일란의 수율향상을 위한 압출성형 조건의 최적화

  • Jeon, Sujung (Department of Food Science and Technology, Kongju National University) ;
  • Ryu, Gihyung (Department of Food Science and Technology, Kongju National University)
  • Received : 2014.10.23
  • Accepted : 2015.02.25
  • Published : 2015.04.30

Abstract

The effects of feed moisture content (25, 35, and 45%), screw speed (230, 250, and 270 rpm), and barrel temperature (130, 140, and $150^{\circ}C$) on the product yield and soluble arabinoxylan (SAX) content from destarched corn fiber (DCF), and its optimization were investigated. The yield and SAX content of corn fiber gum (CFG) from the extruded destarched corn fiber (EDCF) were higher than those of DCF. Statistical analyses revealed that the feed moisture content and barrel temperature had a significant effect on the CFG yield and total SAX content. The optimum extrusion pretreatment conditions were as follows: feed moisture content, 30%; screw speed, 260 rpm; barrel temperature, $133^{\circ}C$. This study showed that the response surface methodology was suitable for the optimization of the extrusion conditions used to maximize the CFG yield and total SAX content from EDCF.

본 연구는 압출성형 된 옥수수 섬유질로부터 화학적 추출을 통해 SAX와 CFG 수율을 향상시키기 위해 반응표면분석법을 이용하여 최적의 압출성형조건을 확립하였다. 압출성형공정 조건 중 수분함량($X_1$), 스크루 회전속도($X_2$), 배럴온도($X_3$)를 독립 변수로 하고 옥수수 섬유질의 residual solid, final solution, 그리고 CFG의 수율과 각각의 SAX값을 종속 변수로 하여 화학적으로 추출 하였다. 그 결과, 수율의 경우 final solution은 EDCF가 DCF보다 낮은 경향을 보였고, residual solid와 CFG의 경우, EDCF가 DCF보다 높은 경향을 나타내었다. SAX값은 모든 조건의 EDCF가 DCF보다 높은 경향을 나타냈다. 각각의 결정된 최적의 압출성형 조건에서 분석한 결과 모든 조건에서 예측값과 결과값이 유사하여 반응표면 분석의 결과가 양호한 것으로 나타났다. 이상의 연구결과에서 반응표면 분석법이 압출성형 공정에 의한 CFG의 수율과 총 SAX값의 최적화를 위한 적절한 방법 중 하나라는 것을 보여주었다.

Keywords

References

  1. Singkhornart S, Lee SG, Ryu GH. Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber. J. Sci. Food Agr. 93: 3046-3054 (2013) https://doi.org/10.1002/jsfa.6138
  2. Schneeman BO. Soluble vs insoluble fiber: Different physiological responses. Food Technol. 41: 81-82 (1987)
  3. Kritchevsky D. Dietary fiber. Annu. Rev. Nutr. 8: 301-328 (1988) https://doi.org/10.1146/annurev.nu.08.070188.001505
  4. Ning L, Villota R, Artz WE. Modification of corn fiber through chemical treatments in combination with twin-screw extrusion. Cereal Chem. 68: 632-636 (1991)
  5. Saha BC. Hemicellulose bioconversion. J. Ind. Microbiol. Biot. 30: 279-291 (2003) https://doi.org/10.1007/s10295-003-0049-x
  6. Kim MH, Gil SK, Kim CH, Lee KC, Tie J, Ryu GH. Effect of extrusion conditions on change in properties of corn fiber. Food Eng. Prog. 16: 40-46 (2012)
  7. van Eylen D, van Dongen F, Kabel M, de Bont J. Corn fiber, cobs and stover: Enzyme-aided saccharification and co-fermentation after dilute acid pretreatment. Bioresource Technol. 102: 5995-6004 (2011) https://doi.org/10.1016/j.biortech.2011.02.049
  8. Williamson G, Kroon PA, Faulds CB. Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144: 2011-2023 (1998) https://doi.org/10.1099/00221287-144-8-2011
  9. Srossy Z, Tenkanen M, Pitkanen L, Bjerre AB, Plackett D. Extraction and chemical characterization of rye arabinoxylan and the effect of ${\beta}$-glucan on the mechanical and barrier properties of cast arabinoxylan films. Food Hydrocolloid. 30: 206-216 (2013) https://doi.org/10.1016/j.foodhyd.2012.05.022
  10. Rose DJ, Inglett GE, Liu SX. Utilisation of corn (zea mays) bran and corn fiber in the production of food components. J. Sci. Food Agr. 90: 915-924 (2010)
  11. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agr. Food Chem. 58: 1768-1776 (2010) https://doi.org/10.1021/jf9033255
  12. Hwang JK, Kim CT, Hong SI, Kim CJ. Solubilization of plant cell walls by extrusion. J. Korean Soc. Food Sci. Nutr. 23: 358-370 (1994)
  13. Jacquemin L, Zeitoun R, Sablayrolles C, Pontalier PY, Rigal L. Evaluation of the technical and environmental performances of extraction and purification processes of arabinoxylans from wheat straw and bran. Process Biochem. 47: 373-380 (2012) https://doi.org/10.1016/j.procbio.2011.10.025
  14. AOAC. Official Methods of Analysis of AOAC Intl. 18th ed. Method 945.38. Association of Official Analytical Chemist, Arlington, VA, USA (2005)
  15. AOAC. Official Methods of Analysis of AOAC Intl. 18th ed. Method 996.11. Association of Official Analytical Chemist, Arlington, VA, USA (1999)
  16. AOAC. Official Methods of Analysis of AOAC Intl. 18th ed. Method 991.43. Association of Official Analytical Chemist, Arlington, VA, USA (1999)
  17. Gaspar M, Juhsz T, Szengyel Z, Rczey K. Fractionation and utilisation of corn fibre carbohydrates. Process Biochem. 40: 1183-1188 (2005) https://doi.org/10.1016/j.procbio.2004.04.004
  18. Douglas SG. A rapid method for the determination of pentosans in wheat flour. Food Chem. 7: 139-145 (1981) https://doi.org/10.1016/0308-8146(81)90059-5
  19. Kim DS, Park YS. Optimization of electro-UV-ultrasonic complex process for E. coli disinfection using Box-Behnken experiment. J. Korean Soc. Environ. Eng. 33: 149-156 (2011) https://doi.org/10.4491/KSEE.2011.33.3.149
  20. Box GEP, Draper NR. Empirical Model-building and Response Surface. John Willey & Sons, Inc., Hoboken, NJ, USA. p. 669 (1987)
  21. Mendona S, Grossmann MVE, VerhR. Corn bran as a fibre source in expanded snacks. LWT-Food Sci. Technol. 33: 2-8 (2000) https://doi.org/10.1006/fstl.1999.0601
  22. Escarnot E, Aguedo M, Agreessens R, Wathelet B, Paquot M. Extraction and characterization of water-extractable and waterunextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. J. Cereal Sci. 53: 45-52 (2011) https://doi.org/10.1016/j.jcs.2010.09.002
  23. Sim CH. Application of response surface methodology for optimization of process in food technology. Food Eng. Prog. 15: 97-115 (2011)
  24. Park HE, Row KH. Optimization of synthesis condition of monolithic sorbent using response surface methodology. Appl. Chem. Eng. 24: 299-304 (2013)
  25. Yoo JH, Alavi S, Vadlani P, Amanor-Boadu V. Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technol. 102: 7583-7590 (2011) https://doi.org/10.1016/j.biortech.2011.04.092
  26. Karunanithy C, Muthukumarappan K. Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Ind. Crop. Prod. 33: 188-199 (2011) https://doi.org/10.1016/j.indcrop.2010.10.008
  27. Lee SH, Teramoto Y, Endo T. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I-Effect of additives with cellulose affinity. Bioresource Technol. 100: 275-279 (2009) https://doi.org/10.1016/j.biortech.2008.05.051
  28. Yoo JH, Alavi S, Vadlani P, Behnke KC. Soybean hulls pretreated using thermo-mechanical extrusion-hydrolysis efficiency, fermentation inhibitors, and ethanol yield. Appl. Biochem. Biotech. 166: 576-589 (2012) https://doi.org/10.1007/s12010-011-9449-y
  29. Vasanthan T, Gaosong J, Yeung J, Li J. Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem. 77: 35-40 (2002) https://doi.org/10.1016/S0308-8146(01)00318-1
  30. Siljestrm M, Westerlund E, Bjrck I, Holm J, Asp NG, Theander O. The effects of various thermal processes on dietary fibre and starch content of whole grain wheat and white flour. J. Cereal Sci. 4: 315-323 (1986) https://doi.org/10.1016/S0733-5210(86)80035-2
  31. Bian J, Peng F, Peng P, Xu F, Sun RC. Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohyd. Res. 345: 802-809 (2010) https://doi.org/10.1016/j.carres.2010.01.014