DOI QR코드

DOI QR Code

Design of MMA-Type Thermosetting Road Markings to Improve Reflectivity

재귀반사도 개선을 위한 MMA계 열경화성 차선도료의 설계

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Lee, Chang Geun (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • Received : 2015.04.14
  • Accepted : 2015.05.14
  • Published : 2015.08.10

Abstract

Several attempts to design the best-available thermosetting road markings by using MMA to improve the durability and retroreflectivity are presented in this paper. In order to improve field applicability, the components of main materials were designed by means of reducing the hardening time lower than eight minutes. The optimum mixing ratio of thermosetting road marking was TSRM-6 composed of 15.6 wt% of MMA monomer ($Tg=105^{\circ}C$), 6.0 wt% of PMMA (MW = 70,000, $Tg=60^{\circ}C$) and 1.2 wt% of TMPTA (MW = 338, $Tg=27^{\circ}C$). Also the homogeneous mixing of all components was necessary. The use of ceramic glass beads with an optimized TSRM-6 exhibited excellent performance by achieving retroreflectivity coefficients of 431, 354 and $172mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ for dry, wet and rainy test condition, respectively at two hundred thousand cycles.

본 연구에서는 차선도료로 MMA (methyl metacrylate) 수지계 열경화성 수지를 선정하여 차선의 내구성능과 재귀반사성능을 개선할 수 있는 최적의 열경화성 차선도료를 설계하고자 하였다. 특히 현장 적용성을 향상시키기 위하여 차선도료의 경화시간을 8 min으로 단축하기 위해 주재의 구성요소를 설계하였다. 실험 결과 MMA 모노머($Tg=105^{\circ}C$) 15.6 wt%에 PMMA (ploymethyl metacrylate, MW = 70,000, $Tg=60^{\circ}C$) 6.0 wt%와 TMPTA (trimethylolpropane triacrylate, MW = 338, $Tg=27^{\circ}C$) 1.2 wt%를 배합한 TSRM-6가 부착강도 등 도료물성이 우수하여 최적 배합비율로 결정하였다. 열경화성 차선도료의 도장조건은 분사 전 반드시 균일한 혼합이 이루어져야 하며 최적 설계된 TSRM-6에 우천용 유리알을 사용한 경우 마모시험 횟수 20만 회에서 야간재귀반사성능계수는 $431mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ (건조 조건), $354mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ (젖은 조건), $172mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ (비오는 조건)으로 우수한 성능을 나타내었다.

Keywords

References

  1. A. Carlos and P. E. Lopez, Pavement Marking Handbook, Texas Department of Transportation (2004).
  2. G. Burgess, M. R. Shortis, and P. Scott, Photographic assessment of retroreflective film properties, ISPRS J. Photogramm. Remote Sens., 66(5), 743-750 (2011). https://doi.org/10.1016/j.isprsjprs.2011.07.002
  3. T. Grosges, Retro-reflection of glass beads for traffic road stripe paints, Opt. Mater., 30(10), 1549-1554 (2008). https://doi.org/10.1016/j.optmat.2007.09.010
  4. J. R. Sayer and M. L. Mefford, High visibility safety apparel and nighttime conspicuity of pedestrians in work zones, J. Safety Res., 35(5), 537-546 (2004). https://doi.org/10.1016/j.jsr.2004.08.007
  5. S. Dahlstedt and O. Svenson, Detection and reading distances of retroreflective road signs during night driving, Appl. Ergon., 8(1), 7-14 (1977). https://doi.org/10.1016/0003-6870(77)90110-7
  6. P. Konstantopoulos, P. Chapman, and D. Crundall, Driver's visual attention as a function of driving experience and visibility, Accid. Anal. Prev., 42(3), 827-834 (2010). https://doi.org/10.1016/j.aap.2009.09.022
  7. A. Rahman and N. E. Lownes, Analysis of rainfall impacts on platooned vehicle spacing and speed, Transp. Res. Part F: Traffic Psychol. Behav., 15(4), 395-403 (2012). https://doi.org/10.1016/j.trf.2012.03.004
  8. T. R. Miller, Benefit-cost analysis of lane marking, Transp. Res. Rec., 1334, 38-45 (1992).
  9. S. Dutta, N. Karak, and T. Jana, Evaluation of Mesua ferrea L. seed oil modified polyurethane paints, Prog. Org. Coat., 65(1), 131-135 (2009). https://doi.org/10.1016/j.porgcoat.2008.10.008
  10. T. Suzuki, M. Shibayama, K. Hatano, and M. Ishii, [NCO]/[OH] and acryl-polyol concentration dependence of the gelation process and the microstructure analysis of polyurethane resin by dynamic light scattering, Polymer, 50(11), 2503-2509 (2009). https://doi.org/10.1016/j.polymer.2009.03.035
  11. A. M. Atta, A. M. Elsaeed, R. K. Farag, and S. M. El-Saeed, Synthesis of unsaturated polyester resins based on rosin acrylic acid adduct for coating applications, React. Funct. Polym., 67(6), 549-563 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.03.009
  12. D. J. Suh, O. O. Park, and K. H. Yoon, The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polymer, 41(2), 461-466 (2000). https://doi.org/10.1016/S0032-3861(99)00168-8
  13. S. Li, B.-L. Hsu, F. Li, C. Y. Li, F. W. Harris, and S. Z. D. Cheng, A study of polyimide thermoplastics used as tougheners in epoxy resins-structure, property and solubility relationships, Thermochim. Acta., 340-341, 221-229 (1999). https://doi.org/10.1016/S0040-6031(99)00266-X
  14. S. Fujisawa and Y. Kadoma, Action of eugenol as a retarder against polymerization of methyl methacrylate by benzoyl peroxide, Biomaterials, 18(9), 701-703 (1997). https://doi.org/10.1016/S0142-9612(96)00196-2
  15. I. K. Hong, C. G. Lee, and S. B. Lee, Embedment properties of reflective beads for thermoplastic road markings, Appl. Chem. Eng., 26(2), 199-204 (2015). https://doi.org/10.14478/ace.2015.1014
  16. T. Horberry, J. Anderson, and M. A. Regan, The possible safety benefits of enhanced road markings: A driving simulator evaluation, Transportation Research Part F: Traffic Psychology and Behaviour, 9(1), 77-87 (2006). https://doi.org/10.1016/j.trf.2005.09.002
  17. T. Kinoshita, The method to determine the optimum refractive index parameter in the laser diffraction and scattering method, Adv. Powder Technol., 12(4), 589-602 (2001). https://doi.org/10.1163/15685520152756697
  18. S. T. Godley, A driving simulator investigation of perceptual countermeasures to speeding, Ph. D. Thesis, Monash University (1999).

Cited by

  1. Performance and environmental assessment of prefabricated retroreflective spots for road marking vol.15, pp.None, 2021, https://doi.org/10.1016/j.cscm.2021.e00555