DOI QR코드

DOI QR Code

Removal Characteristics of Heavy Metals from Aqueous Solution by Recycled Aggregate and Recycled Aggregate/Steel Slag Composites as Industrial Byproducts

산업부산물인 순환골재 및 순환골재/제강슬래그 조합을 이용한 수용액상에서의 중금속 제거 특성

  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University)
  • 신우석 (국립한경대학교 해양과학기술연구센터) ;
  • 김영기 (국립한경대학교 화학공학과)
  • Received : 2015.05.08
  • Accepted : 2015.07.08
  • Published : 2015.08.10

Abstract

This study examined the adsorption characteristics of heavy metal ions ($Cr^{6+}$, $As^{3+}$) in an aqueous solution using recycled aggregate (RA) and recycled aggregate (RA)/steel slag (SS) composites. The RA and SS are favorable for the absorbent because it contains about 91% and 86.9%, respectively, which are some of the major adsorbent ingredients (CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$) for heavy metal. Kinetic equilibrium of $Cr^{6+}$ and $As^{3+}$ in RA and RA/SS composites reached within 180 min and 360 min, respectively. The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Freundlich model and showed the affinity order of $As^{3+}$ > $Cr^{6+}$. The results of $As^{3+}$ also showed that the adsorption capacity slightly increased with increasing pH from 6 to 10. Meanwhile, the adsorption capacity of $Cr^{6+}$ was slightly decreased. From these results, it was concluded that the RA and RA/SS composites can be successfully used for removing the heavy metals ($Cr^{6+}$ and $As^{3+}$) from aqueous solutions.

본 연구에서는 순환골재와 순환골재/제강슬래그 조합을 이용하여 수용액상에서 $Cr^{6+}$$As^{3+}$ 흡착 특성을 평가하였다. 순환골재와 제강슬래그의 주요 성분(CaO, $SiO_2$, $Al_2O_3$, $Fe_2O_3$)이 각각 91%와 86.9% 함유되어 흡착제로서 유리한 조성을 가지고 있다. 순환골재와 순환골재/제강슬래그 조합에 있어서 $Cr^{6+}$$As^{3+}$의 동역학적 평형은 각각 180 min과 360 min 이후에 도달하였다. 동적흡착결과를 유사 1차 모델과 유사 2차 모델로 분석한 결과 두 모델 모두 더딘 평형 결과를 나타냈다. 순환골재와 순환골재/제강슬래그 조합에 있어서, 평형흡착 실험은 Freundlich 모델에 잘 부합했고, $Cr^{6+}$보다 $As^{3+}$의 흡착량이 더 높았다. 용액의 pH가 6에서 10으로 증가함에 따라서 $As^{3+}$의 흡착률은 증가하는 것으로 나타났다. 한편, $Cr^{6+}$는 감소를 나타냈다. 본 연구 결과를 통해 순환골재 및 순환골재/제강슬래그 조합은 중금속($Cr^{6+}$, $As^{3+}$)을 효율적으로 제거할 수 있는 흡착제로 판단된다.

Keywords

References

  1. W. L. Lindsay, Chemical equilibria in soils, J. Wiley and Sons, New York, USA (1979).
  2. Z. R. Holan and B. Volesky, Biosorption of lead and nickel by biomass of marine algae, Biotechnol. Bioeng., 43, 1001-1009 (1994). https://doi.org/10.1002/bit.260431102
  3. K. S. Hui, C. Y. H. Chao, and S. C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., B127, 89-101 (2005).
  4. C. T. Oh, S. S. Rhee, T. Igarashi, H. J. Kon, W. T. Lee, and J. B. Park, Sorption characteristics of arsenic on furnace slag by adsorption isotherm and kinetic sorption experiments, J. Kor. Geotech. Soc., 26, 37-45 (2010).
  5. M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbnets for the treatment of wastewater laden with heavy metals, Adan. Colloid Interf. Sci., 166, 36-59 (2011). https://doi.org/10.1016/j.cis.2011.04.005
  6. F. Fu and Q. Wang, Removal of heavy metal ions from wastewater: A review, J. Environ. Manag., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  7. M. Jr. Horsfall and A. A. Abia, Sorption of cadmium (II) and zinc (II) ions from aqueous solutions by cassava waste biomass (manihotsculenta Cranz), Water Res., 37, 4913-4923 (2003). https://doi.org/10.1016/j.watres.2003.08.020
  8. W. S. Shin and Y. K. Kim, Bioremediation of contaminated sediemnts using microorganism, KIC News, 17, 1-7 (2014).
  9. J. B. Kim, J. I. Oh, and C. S. Park, AMD (Acid Mine Drainage) neutralization using recycled-concrete aggregates, J. Kor. Sco. Environ. Engin., 24, 21-30 (2002).
  10. M. Hyodo, T. Kuwabara, S. Sato, and T. Nonaka, Recycling of fine demolished concrete as functional overlying sand, The Japanese Society of Irrigation, Drainage and Rural Engineering (JSIDRE), 257, 19-25 (2008).
  11. M. Hyodo, T. Kuwabara, S. Sato, and T. Nonaka, Recycling of fine demolished concrete as functional overlying sand, Japanese Society of Irrigation, Drainage and Rural Engineering (JSIDRE), 257, 19-25 (2008).
  12. W. S. Shin and Y. K. Kim, Removal characteristics of Mixed heavy metals from aqueous solution by recycled aggregate as construction waste, J. Kor. Soc. Mar. Environ. Energy, 16, 115-120 (2013). https://doi.org/10.7846/JKOSMEE.2013.16.2.115
  13. N. J. Coleman, W. E. Lee, and J. J. Slipper, Interactions of aqueous Cu, Zn and Pb ions with crushed concrete fines, J. Hazard. Mater., 121, 203-213 (2005). https://doi.org/10.1016/j.jhazmat.2005.02.009
  14. J. Simmons, P. Ziemkiewicz, and D. C. Black, Use of steel slag leach beds for the treatment of acid mine drainage, Mine Water Environ., 21, 91-99 (2002). https://doi.org/10.1007/s102300200024
  15. W. S. Shin and Y. K. Kim, Stabilization of mixed heavy metals in contaminated marine sediment using steel slag, J. Navig. Port Res., 38, 269-275 (2014). https://doi.org/10.5394/KINPR.2014.38.3.269
  16. Y. S. Ho and G. McKay, Thesorption of lead (II) ions on peat, Waster Res., 33, 578-584 (1999a).
  17. Y. S. Ho and G. Mckay, Pseudo-second-order model for sorption processes, Proc. Biochem., 34, 451-465 (1999b). https://doi.org/10.1016/S0032-9592(98)00112-5
  18. C. H. Weng and C. P. Huang, Treatment of metal industrial waste water by fly ash and cement fixation, J. Environ. Eng., 120, 1470-1487 (1994). https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  19. A. Allahverdi and E. N. Kain, Construction wastes as raw materials for geopolymer binders, Inter. J. Civil Eng., 7, 154-160 (2009).
  20. N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses, J. Non-Cryst. Solids, 11, 258-268 (1991).
  21. J. D. Ortego and Y. Barroeta, Leaching effects on silicate polymerization, A FTIR and 29Si NMR study of lead and zinc in Portland cement, Environ. Sci. Technol., 25, 1171-1174 (1991). https://doi.org/10.1021/es00018a024
  22. K. Kang, S. J. Park, W. S. Shin, B. H. Um, and Y. K. Kim, Removal of synthetic heavy metal ($Cr^{6+}, $Cu^{2+}, $As^{3+}, $Pb^{2+}) from water using red mud and lime stone, J. Kor. Sco. Environ. Eng., 34, 566-573 (2012).
  23. J. Weber and C. T. Miller, Organic chemical movement over and through soil. In: B. L. sawhney and K. Broen (eds.). Reactions and movement of organic chemicals in soils, SSSA special publication 22, Soil Sci. Soci. Amer., Madison, 305-334, Wisconsin (1989).
  24. C. K. Na, M. Y. Han, and H. J. Park, Applicability of theoretical adsorption models for studies on adsorption properties of adsorbent(I), J. Kor. Soc. Environ. Eng., 33, 606-616 (2011). https://doi.org/10.4491/KSEE.2011.33.8.606
  25. H. S. Altundogan, S. Altundogan, F. Tumen, and M. Bildik, Arsenic removal from aqueous solutions by adsorption on red mud, Waste Manange., 20, 761-767 (2000). https://doi.org/10.1016/S0956-053X(00)00031-3
  26. K. V. Gupta, M. Gupta, and S. Sharma, Process development for the removal of lead and chromium form aqueous solutions using red mud-an aluminium industry waste, Wat. Res., 35, 1125-1134 (2001). https://doi.org/10.1016/S0043-1354(00)00389-4
  27. S. W. Yun, S. I. Kang, H. G. Jin, H. J. Kim, and C. Yu, Leaching characteristics of arsenic and heavy metals and stabilization effects of limestone and steel refining slag in a reducing environment of flooded paddy soil, J. Agric. Life Sci., 45, 251-263 (2011).
  28. V. Hatje, T. E. Payne, D. M. Hill, G. McOrist, and G. F. Birch, Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading, Environ. Inter., 29, 619-629 (2003). https://doi.org/10.1016/S0160-4120(03)00049-7
  29. N. Z. Misak, H. F. Ghoneimy, and T. N. Morcos, Adsorption of Co2+ and Zn2+ ions on hydrous Fe(III), Sn(IV), and Fe(III)/Sn(IV) oxides, J. Collid Interf. Sci., 184, 31-43 (1996).
  30. G. Atun, G. Hisarli, W. S. Sheldrick, and M. Muhler, Adsorptive removal of methylene blue from colored effluents on fuller's earth, J. Colloid Interf. Sci., 261, 32-39 (2003). https://doi.org/10.1016/S0021-9797(03)00059-6
  31. C. A. Toles, W. E. Marshall, L. H. Wartelle, and A. McAloon, Steam- or carbon dioxide-activated carbons from almond shells: physcial, chemical and adsorptive properties and estimated cost of production, Bioresour. Technol., 75, 197-203 (2000). https://doi.org/10.1016/S0960-8524(00)00058-4
  32. KORAS, http://www.koras.org/05/value.jsp (2008).
  33. http://www.alibaba.com
  34. C. Jihan, L. Yonglin, C. Peng, L. Kai, S. Qiyu, and Z. Xiangyong, Preliminary study on zeolite materials used to control of heavy metal pollution during the culture of mud clam Tegillarca granosa L., Aquacult. Res., 46, 1426-1435 (2015). https://doi.org/10.1111/are.12296
  35. K. Selvi, S. Pattabhi, and K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresour. Technol., 80, 87-89 (2001). https://doi.org/10.1016/S0960-8524(01)00068-2
  36. D. Mohan, C. U. Pittman Jr, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P. H. Steele, M. F. Alexandre-Franco, V. Gomez-Serrano, and H. Gong, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interf. Sci., 310, 57-73 (2007). https://doi.org/10.1016/j.jcis.2007.01.020

Cited by

  1. 저질개선제에 의한 수용액상의 As(III)와 Cr(VI) 흡착 특성 vol.32, pp.2, 2015, https://doi.org/10.15681/kswe.2016.32.2.216
  2. Interactions of Cd2+, Co2+ and MoO42− Ions with Crushed Concrete Fines vol.5, pp.2, 2015, https://doi.org/10.3390/jcs5020042