DOI QR코드

DOI QR Code

Synthesis and Characterization of DNA-mediated Gold Nanoparticles by Chemical Reduction Method

화학적환원에 의한 DNA-mediated 금 나노입자의 합성 및 특성

  • Sohn, Jun Youn (Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology) ;
  • Sohn, Jeong Sun (College of General Education, Chosun University)
  • 손준연 (조선이공대학교 생명환경화공과) ;
  • 손정선 (조선대학교 기초교육대학 자유전공학부)
  • Received : 2015.07.02
  • Accepted : 2015.07.18
  • Published : 2015.08.10

Abstract

Complexes composed of hydrogen tetrachloroaurate (III) trihydrate ($HAuCl_4{\cdot}3H_2O$) and DNA were first formed for the synthesis of gold nanoparticle using a DNA template, which were validated using UV-Vis spectroscopy. The morphology of complexes were also characterized by scanning electron microscopy (SEM). DNA-mediated gold nanoparticles were synthesized by the chemical reduction of DNA-Au(III) complexes using hydrazine ($N_2H_4$) and sodium borohydride ($NaBH_4$) as reducing agents. The effects of reducing agent types and their concentration on the formation of gold nanoparticles were investigated. The results showed that hydarazine was the most effective for the reduction of DNA-Au(III) complex. The DNA-mediated gold nanoparticles were characterized SEM, particle size analyzer (PSA), and transmission electron microscopy (TEM). Gold nanoparticles with 55~80 nm in diameter were formed by the aggregation of smaller gold nanoparticles (~nm), which was confirmed in the DNA matrix.

DNA템플릿을 이용한 금속 나노입자 합성을 위하여 먼저 DNA와 Gold(III) chloride ($HAuCl_4{\cdot}3H_2O$)의 복합체를 합성하고 UV-Vis spectroscopy 등으로 확인하였고 scanning electron microscopy (SEM)에 의해 그들의 모폴로지를 조사하였다. 합성된 복합체에 hydrazine ($N_2H_4$)과 sodium borohydride ($NaBH_4$)와 같은 환원제를 도입하여 화학적 환원을 유도함으로써 DNA 매트릭스에서의 금 나노입자를 제조하였다. 환원제의 종류와 농도에 따른 금 나노입자 형성에 미치는 영향을 비교 조사하였다. 환원제로 hydrazine ($N_2H_4$)을 사용한 경우 DNA-Au(III) complex의 환원에 보다 효과적인 결과를 보였다. 합성된 DNA-mediated gold nanoparticle에 대하여 SEM, particle size analyzer (PSA), transmission electron microscopy(TEM)를 이용하여 특성조사를 하였다. 수 nm의 작은 입자들이 응집되면서 대략 55~80 nm의 크기를 갖는 금 나노입자의 클러스터를 형성하였고 이들은 DNA 매트릭스에서 확인되었다.

Keywords

References

  1. J. D. Watson and F. H. Crick, Molecular structure of nucleic acids; A Structure for Deoxyribose Nucleic Acid, Nature, 171, 737-738 (1953). https://doi.org/10.1038/171737a0
  2. M. H. F. Wilkins, A. R. Stokes, and H. R. Wilson, Molecular structure of deoxypentose nucleic acids, Nature, 171, 738-740 (1953). https://doi.org/10.1038/171738a0
  3. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539-544 (1998). https://doi.org/10.1038/28998
  4. N. C. Seeman, DNA nanotechnology: novel DNA constructions, Annu. Rev. Biophys. Biomol. Struct., 27, 225-248 (1998). https://doi.org/10.1146/annurev.biophys.27.1.225
  5. C. D. Mao, W. Q. Sun, and N. C. Seeman, Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy, J. Am. Chem. Soc., 121, 5437-5443 (1999). https://doi.org/10.1021/ja9900398
  6. N. C. Seeman, DNA Nicks and Nodes and Nanotechnology, Nano Lett., 1, 22-26 (2001). https://doi.org/10.1021/nl000182v
  7. N. C. Seeman, DNA in a material world, Nature, 421, 427-431 (2003). https://doi.org/10.1038/nature01406
  8. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297-302 (2006). https://doi.org/10.1038/nature04586
  9. J. Malo, J. C. Mitchell, C. Venien-Bryan, J. R. Harris, H. Wille, D. J. Sherratt, and A. J. Turberfield, Engineering a 2D Protein-DNA Crystal, Angew. Chem. Int. Ed., 44, 3057-3061 (2005). https://doi.org/10.1002/anie.200463027
  10. T. J. Fu and N. C. Seeman, DNA double-crossover molecules, Biochemistry, 32, 3211-3220 (1993). https://doi.org/10.1021/bi00064a003
  11. T. H. LaBean and H. Y. Li, Constructing novel materials with DNA, Nano Today, 2, 26-35 (2007). https://doi.org/10.1016/S1748-0132(07)70056-7
  12. P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, and J. S. Lee, M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire, J. Mol. Biol., 294, 477-485 (1999). https://doi.org/10.1006/jmbi.1999.3234
  13. K. Tanaka and M. Shionoya, Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing through Metal Complexation, J. Org. Chem., 64, 5002-5003 (1999). https://doi.org/10.1021/jo990326u
  14. R. Seidel, L. C. Ciacchi, M. Weigel, W. Pompe, and M. Mertig, Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth, J. Phys. Chem. B, 108, 10801-10811 (2004).
  15. J. Richter, Metallization of DNA, Physica E, 16, 157-173 (2003). https://doi.org/10.1016/S1386-9477(02)00670-7
  16. J. S. Sohn, Y. W. Kwon, J. I. Jin, and B. W. Jo, DNA-Templated Preparation of Gold Nanoparticles, Molecules, 16, 8143-8151 (2011). https://doi.org/10.3390/molecules16108143
  17. T. Shimizu, T. Teranishi, S. Hasegawa, and M. Miyake, Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State, J. Phys. Chem. B, 107, 2719-2724 (2003). https://doi.org/10.1021/jp026920g
  18. Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids, J. Phys. Chem. B, 108, 4046-4052 (2004). https://doi.org/10.1021/jp037056a
  19. K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer, Langmuir, 14, 3157-3159 (1998). https://doi.org/10.1021/la980162x
  20. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, UV-initiated growth of gold nanoparticles in PMMA matrix, Applied Surface Science, 248, 181-184 (2005). https://doi.org/10.1016/j.apsusc.2005.03.002