참고문헌
- Amaya K, Ohta T, Kitagawa H, et al (2004). Angiotensin II activates MAP kinase and NF-kB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol, 25, 849-56.
- Arvizo RR, Moyano DF, Saha S, et al (2013). Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J Biol Chem, 288, 17610-8. https://doi.org/10.1074/jbc.M112.435206
- Baker DJ, Jin F, Jeganathan KB, et al (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer cell, 16, 475-86. https://doi.org/10.1016/j.ccr.2009.10.023
- Baughman JM, Perocchi F, Girgis HS, et al (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature, 476, 341-5. https://doi.org/10.1038/nature10234
- Beroukhim R, Lin M, Park Y, et al (2006). Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP arrays. PLoS Comput Biol, 2, 41. https://doi.org/10.1371/journal.pcbi.0020041
- Bick AG, Calvo SE, Mootha VK (2012). Evolutionary diversity of the mitochondrial calcium uniporter. Science, 336, 886-. https://doi.org/10.1126/science.1214977
- Butz J, Wickstrom E, Edwards J (2003). Characterization of mutations and loss of heterozygosity of p53 and K-ras2 in pancreatic cancer cell lines by immobilized polymerase chain reaction. BMC Biotechnol, 3, 11. https://doi.org/10.1186/1472-6750-3-11
- Chen K, Hsu L-T, Wu C-Y, et al (2013). CBARA1 plays a role in stemness and proliferation of human embryonic stem cells. PloS One, 8, 63653. https://doi.org/10.1371/journal.pone.0063653
- Contreras L, Drago I, Zampese E, et al (2010). Mitochondria: the calcium connection. BBA-Gen Subjects, 1797, 607-18.
-
Csordas G, Golenar T, Seifert EL, et al (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial
$Ca^{2+}$ uniporter. Cell Metab, 17, 976-87. https://doi.org/10.1016/j.cmet.2013.04.020 - Csordas G, Varnai P, Golenar T, et al (2012). Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Mol Cell Endocrinol, 353, 109-13. https://doi.org/10.1016/j.mce.2011.11.011
- Curry MC, Peters AA, Kenny PA, et al (2013). Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun, 434, 695-700. https://doi.org/10.1016/j.bbrc.2013.04.015
- Day IN (2010). dbSNP in the detail and copy number complexities. Hum Mutat, 31, 2-4. https://doi.org/10.1002/humu.21149
- Donahue TR, Tran LM, Hill R, et al (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res, 18, 1352-63. https://doi.org/10.1158/1078-0432.CCR-11-1539
- Elnemr A, Ohta T, Iwata K, et al (2000). PPARgamma ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int J Oncol, 17, 1157-221.
- Frampton SJ, King EV (2013). Loss of heterozygosity. in 'encyclopedia of otolaryngology, head and neck surgery', Eds Springer, 1488
- Franko J, Krasinskas AM, Nikiforova MN, et al (2008). Loss of heterozygosity predicts poor survival after resection of pancreatic adenocarcinoma. J Gastrointest Surg, 12, 1664-73. https://doi.org/10.1007/s11605-008-0577-9
- Fujita PA, Rhead B, Zweig AS, et al (2010). The UCSC genome browser database: update 2011. Nucleic Acids Res, 963.
- Hoffman NE, Chandramoorthy HC, Shamugapriya S, et al (2013). MICU1 motifs define mitochondrial calcium uniporter binding and activity. Plant Cell Rep, 5, 1576-88. https://doi.org/10.1016/j.celrep.2013.11.026
- Kohl M, Wiese S, Warscheid B (2011). Cytoscape: software for visualization and analysis of biological networks. , Eds Springer, 696, 291-303 https://doi.org/10.1007/978-1-60761-987-1_18
- Kopp JL, von Figura G, Mayes E, et al (2012). Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell, 22, 737-50. https://doi.org/10.1016/j.ccr.2012.10.025
- Kroemer G, Galluzzi L, Brenner C (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev, 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
- Lin L-J, Asaoka Y, Tada M, et al (2008). Integrated analysis of copy number alterations and loss of heterozygosity in human pancreatic cancer using a high-resolution, single nucleotide polymorphism array. Oncol, 75, 102-12. https://doi.org/10.1159/000155813
- Logan CV, Szabadkai G, Sharpe JA, et al (2014). Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet, 46, 188-93.
- Lucas AL, Shakya R, Lipsyc MD, et al (2013). High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res, 19, 3396-403. https://doi.org/10.1158/1078-0432.CCR-12-3020
- Mallilankaraman K, Doonan P, Cardenas C, et al (2012). MICU1 Is an essential gatekeeper for MCU-mediated mitochondrial Ca< sup>2+ uptake that regulates cell survival. Cell, 151, 630-44. https://doi.org/10.1016/j.cell.2012.10.011
- Marchi S, Lupini L, Patergnani S, et al (2013). Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol, 23, 58-63.
- Morton JP, Timpson P, Karim SA, et al (2010). Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci, 107, 246-51. https://doi.org/10.1073/pnas.0908428107
- Patron M, Raffaello A, Granatiero V, et al (2013). The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem, 288, 10750-8. https://doi.org/10.1074/jbc.R112.420752
-
Perocchi F, Gohil VM, Girgis HS, et al (2010). MICU1 encodes a mitochondrial EF hand protein required for
$Ca^{2+}$ uptake. Nature, 467, 291-6. https://doi.org/10.1038/nature09358 -
Raffaello A, De Stefani D, Rizzuto R (2012). The mitochondrial
$Ca^{2+}$ uniporter. Cell Calcium, 52, 16-21. https://doi.org/10.1016/j.ceca.2012.04.006 - Sahu RP, Srivastava SK (2009). The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst, 101, 176-93. https://doi.org/10.1093/jnci/djn470
- Sato Y, Nio Y, Song M, et al (1996). p53 protein expression as prognostic factor in human pancreatic cancer. Anticancer Res, 17, 2779-88.
-
Scorrano L, Oakes SA, Opferman JT, et al (2003). BAX and BAK regulation of endoplasmic reticulum
$Ca^{2+}$ : a control point for apoptosis. Science, 300, 135-9. https://doi.org/10.1126/science.1081208 - Sherman BT, Huang dW, Tan Q, et al (2007). DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics, 8, 426. https://doi.org/10.1186/1471-2105-8-426
- Staaf J, Lindgren D, Vallon-Christersson J, et al (2008). Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. Genome Biol, 9, 136. https://doi.org/10.1186/gb-2008-9-9-r136
- Xu ZG, Du JJ, Zhang X, et al (2003). A novel liver-specific zona pellucida domain containing protein that is expressed rarely in hepatocellular carcinoma. Hepatology, 38, 735-44.
- Yoshida T, Kobayashi T, Itoda M, et al (2010). Clinical omics analysis of colorectal cancer incorporating copy number aberrations and gene expression data. Cancer Informatics, 9, 147.
- Zhang Y, Bharadwaj U, Logsdon CD, et al (2010). ZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 pathway through zinc finger transcription factor CREB. Clin Cancer Res, 16, 1423-30. https://doi.org/10.1158/1078-0432.CCR-09-2405
피인용 문헌
- Expression and influence of Notch signaling in oral squamous cell carcinoma vol.58, pp.2, 2016, https://doi.org/10.2334/josnusd.15-0535
- Structure, Activity Regulation, and Role of the Mitochondrial Calcium Uniporter in Health and Disease vol.7, pp.2234-943X, 2017, https://doi.org/10.3389/fonc.2017.00139
- Voltage-gated calcium channels: Novel targets for cancer therapy vol.14, pp.2, 2017, https://doi.org/10.3892/ol.2017.6457