DOI QR코드

DOI QR Code

Structure and optical properties of vapor grown In2O3: Ga nano-/microcrystals

  • Received : 2015.06.15
  • Accepted : 2015.07.02
  • Published : 2015.06.25

Abstract

Octahedral shaped single crystalline undoped and Ga-doped indium oxide nano-and microcrystals were fabricated using vapor-solid growth process. Effects of Ga doping on the crystallinity, defect structure, and optical properties of the nano-/microstructures have been studied using scanning electron microscopy, microRaman spectroscopy, transmission electron microscopy and cathodoluminescence spectroscopy. It has been observed that incorporation of Ga does not affect the morphology of $In_2O_3$ structures due to its smaller ionic radius, and similar oxidation state as that of In. However, incorporation of Ga in high concentration (~3.31 atom %) causes lattice compression, reduces optical band gap and defect induced CL emissions of $In_2O_3$ nano-/microcrystals. The single crystalline Ga-doped, $In_2O_3$ nano-/microcrystals with low defect contents are promising for optoelectronic applications.

Keywords

References

  1. Ba, J., Fattakhova, D.F., Feldhaff, A., Brezesinski, T., Djerdj, I., Wark, M. and Niederberger, M. (2006), "Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration", Chem. Mater., 18, 2848-2854. https://doi.org/10.1021/cm060548q
  2. Babar, A.R., Deshamukh, P.R., Deokate, R.J., Haranath, D., Bhosale, C.H. and Rajpure, K.Y. (2008), "Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis", J. phys. D: Appl. Phys., 41, 135404-125409. https://doi.org/10.1088/0022-3727/41/13/135404
  3. Bielz, T., Lorenz, H., Amann, P., Klotzer, B. and Penner, S. (2011), "Water-gas shift and formaldehyde reforming activity determined by defect chemistry of polycrystalline $In_2O_3$", J. Phys. Chem. C, 115, 6622-6628.
  4. Cava, R.J., Phillips, J.M., Kwo, J., Thomas, G.A., Van Dover, R.B., Carter, S.A., Krajewski, J.J., Peck, W.F. Jr., Marshall, J.H. and Rapkine, D.H. (1994), "$GaInO_3$: A new transparent conducting oxide", Appl. Phys. Lett., 64, 2071-2072. https://doi.org/10.1063/1.111686
  5. Chao, Y., Tang, W. and Wang, X. (2012), "Properties of resistivity, reflection and absorption related to structure of ITO films", J. Mater. Sci. Technol., 28(4), 325-328. https://doi.org/10.1016/S1005-0302(12)60063-2
  6. Chun, H.J., Choi, Y.S., Bae, S.Y., Choi, H.C. and Park, J. (2004), "Single-crystalline gallium-doped indium oxide nanowires", Appl. Phys. Lett., 85, 461-463. https://doi.org/10.1063/1.1771816
  7. Curreli, M., Li, C., Sun, Y., Lei, B., Gundersen, M.A., Thomson, M.E. and Zhou, C. (2005), "selective functionalization of $In_2O_3$ nanowire mat devices for biosensing applications", J. Am. Chem. Soc., 127(19), 6922-6923. https://doi.org/10.1021/ja0503478
  8. Edwards, D.D., Folkins, P.E. and Mason, T.O. (1997), "Phase equilibria in the $Ga_2O_3$-$In_2O_3$ system", J. Am. Ceram. Soc., 80(1), 253-257. https://doi.org/10.1111/j.1151-2916.1997.tb02820.x
  9. El Hichou, A., Addou, M., Mansori, M. and Ebothe, J. (2009), "Structural, optical and luminescent characteristics of sprayed fluorine-doped $In_2O_3$ thin films for solar cells", Solar Ener. Mater. Solar Cell., 93, 609-612. https://doi.org/10.1016/j.solmat.2008.12.014
  10. Gao, T. and Wang, T. (2006), "Catalytic growth of $In_2O_3$ nanobelts by vapor transport", J. Cryst. Growth, 290, 660-664. https://doi.org/10.1016/j.jcrysgro.2006.01.046
  11. Girtan, M. (2005), "Investigations on the optical constants of indium oxide thin films prepared by ultrasonic spray pyrolysis", Mater. Sci. Technol. B, 118, 175-178.
  12. Granqvist, C.G. (1991), "Solar energy materials: Overview and some examples", Appl. Phys. A: Solid. Surf., 52, 83-93. https://doi.org/10.1007/BF00323721
  13. Granqvist, C.G. (1993), "Transparent conductive electrodes for electrochromic devices: A Review", Appl. Phys. A: Solid. Surf., 57, 19-24. https://doi.org/10.1007/BF00331211
  14. Gu, F., Wang, S.F., Lu, M.K., Zhou, G.J., Xu, D. and Yuan, D.R. (2004), "Photoluminescence properties of $SnO_2$ nanoparticles synthesized by sol-gel method", J. Phys. Chem. B, 108, 8119-8123.
  15. Guo, L., Shen, X., Zhu, G. and Chen, K. (2011), "Preparation and gas-sensing performance of $In_2O_3$ porous nanoplatelets", Sens. Actuators B, 155, 752-758. https://doi.org/10.1016/j.snb.2011.01.042
  16. Gurilo, A., Barsan, N., Weimar, U., Ivanovskaya, M., Taurino, A. and Siciliano, P. (2003), "Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties", Chem. Mater., 15, 4377-4383. https://doi.org/10.1021/cm031114n
  17. Gurlo, A., Ivanovskaya, M., Barsan, N., Schweizer-Berberich, M., Weimar, U., Gopel, W., and Dieguez, A. (1997), "Grain size control in nanocrystalline $In_2O_3$ semiconductor gas sensors", Sens. Actuat. B, 44, 327-333 https://doi.org/10.1016/S0925-4005(97)00199-8
  18. Hamberg, I. and Granqvist, C. (1984), "Optical properties of transparent and heat reflecting indium tin oxide films: The role of ionized impurity scattering", Appl. Phys. Lett., 44, 721-723. https://doi.org/10.1063/1.94896
  19. Hamburg, I. and Granqvist, C.G. (1986), "Evaporated Sn doped $In_2O_3$ films: Basic optical properties and applications to energy efficient windows", J. Appl. Phys., 60, R123-R159. https://doi.org/10.1063/1.337534
  20. Karn, A., Kumar, M., Singh, V.N., Mehta, B.R., Aravindan, S. and Singh, J.P. (2012), "Growth of indium oxide and zinc-doped indium oxide nanostructures", Chem. Vap. Deposition, 18, 295-301. https://doi.org/10.1002/cvde.201207001
  21. Kim, D.W., Hwang, I.S., Kwon, S.J., Kang, G.Y., Park, K.S., Choi, Y.J., Choi, K.J. and Park, J.G. (2007), "Highly conductive coaxial $SnO_2$-$In_2O_3$ heterostructured nanowires for Li ion battery electrodes", Nano Lett., 7, 3041-3045. https://doi.org/10.1021/nl0715037
  22. Korotcenkov, G., Brinzari, V., Ivanov, M., Cerneavschi, A., Rodriguez, J., Cirera, A., Cornet, A. and Morante, J. (2005), "Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing", Thin Solid Film., 479, 38-51. https://doi.org/10.1016/j.tsf.2004.11.107
  23. Kranert, C., Schmidt-Grund, R. and Grundmann, M. (2014), "Raman active phonon modes of cubic $In_2O_3$", Phys. Status Solidi RRL, 8, 554-559. https://doi.org/10.1002/pssr.201409004
  24. Lee, M.S., Choi, W.C., Kim, E.K., Kim, C.K. and Min, S.K. (1996), "Characterization of the oxidized indium thin films with thermal oxidation", Thin Solid Film., 279, 1-3. https://doi.org/10.1016/0040-6090(96)08742-1
  25. Li C.,Zhang, D., Han, S., Liu, X., Tang, T. and Zhou C. (2003), "Diameter-controlled growth of single-crystalline $In_2O_3$ nanowires and their electronic properties", Adv. Mater., 15(2), 143-146. https://doi.org/10.1002/adma.200390029
  26. Li, B.X., Xie, Y., Jing, M., Rong, G.X., Tang, Y.C. and Zhang, G.Z. (2006), "$In_2O_3$ hollow microspheres: Synthesis from designed $In(OH)_3$ precursors and applications in gas sensors and photocatalysis", Langmuir, 22, 9380-9385. https://doi.org/10.1021/la061844k
  27. Li, C., Fan, W., Lei, B., Zhang, D., Han, S., Tang, T., Liu, T., Liu, Z., Asano, S., Meyyappan, M., Han, J., and Zhou, C. (2004), "Multilevel memory based on molecular devices", Appl. Phys. Lett., 84, 1949-1951. https://doi.org/10.1063/1.1667615
  28. Liang, C.H., Meng, G.W., Lei, Y., Phillipp, F. and Zhang, L.D. (2001), "Catalytic growth of semiconducting $In_2O_3$ nanofibers", Adv. Mater., 13, 1330-1333. https://doi.org/10.1002/1521-4095(200109)13:17<1330::AID-ADMA1330>3.0.CO;2-6
  29. Lim, J.H., Yang, E.J., Hwang, D.K., Yang, J.H., Oh, J.Y. and Park, S.J. (2005), "Highly transparent and low resistance gallium-doped indium oxide contact to p-type GaN", Appl. Phys. Lett., 87, 042109-1-042109-3. https://doi.org/10.1063/1.1999012
  30. Lopez, I., Utrilla, A.D., Nogales, E., Mendez, B., Piqueras, J., Peche, A., Ramirez-Castellanos, J. and Gonzalez-Calbet, J.M. (2012), "In-doped gallium oxide micro- and nanostructures: Morphology, structure, and luminescence properties", J. Phys. Chem. C, 116, 3935-3943. https://doi.org/10.1021/jp210233p
  31. Maensiri, S., Laokul, P. and Promarak, V. (2006), "Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone)", J. Cryst. Growth, 289, 102-106. https://doi.org/10.1016/j.jcrysgro.2005.10.145
  32. Matei Ghimbeu, C., Schoonman, J. and Lumbreras, M. (2008), "Porous indium oxide thin films deposited by electrostatic spray deposition technique", Ceram. Intl., 34, 95-100. https://doi.org/10.1016/j.ceramint.2006.08.011
  33. Mazzera, M., Zha, M., Calestani, D., Zappettini, A., Lazzarini, L., Salviati, G. and Zanotti, L. (2007), "Low-temperature $In_2O_3$ nanowire luminescence properties as a function of oxidizing thermal treatments", Nanotechnol., 18, 355707-355713. https://doi.org/10.1088/0957-4484/18/35/355707
  34. McGuire, K., Pan, Z.W., Milkie, D., Menendez, J. and Rao, A.M. (2002), "Raman studies of semiconducting oxide nanobelts", J. Nanosci. Nanotechnol., 2, 499-502. https://doi.org/10.1166/jnn.2002.129
  35. Meng, Y., Yang, X.L., Chen, H.X., Shen, J., Jiang, Y.M., Zhang, Z.J. and Hua, Z.Y. (2001), "A new transparent conductive thin film $In_2O_3$:Mo", Thin Solid Film., 394, 219-223.
  36. Meng, Y., Yang, X.L., Chen, H.X., Shen, J., Jiang, Y.M., Zhang, Z.J. and Hua, Z.Y. (2002), "Molybdenum-doped indium oxide transparent conductive thin films", J. Vac. Sci. Technol. A, 20, 288-290. https://doi.org/10.1116/1.1421595
  37. Mohamed, S.H. (2013), "Transparent conductive gallium-doped indium oxide nanowires for optoelectronic applications", J. Korean Phys. Soc., 62, 902-905. https://doi.org/10.3938/jkps.62.902
  38. Papageorgiou, P., Zervos, M. and Othonos. A. (2011), "An investigation into the conversion of $In_2O_3$ into InN nanowires", Nanoscale Res. Lett., 6, 311-315. https://doi.org/10.1186/1556-276X-6-311
  39. Park, J.H., Choi, W.J., Chae, S.S., Oh, J.Y., Lee, S.J., Song, K.M. and Baik, H.K., (2011), "Structural and electrical properties of solution-processed gallium-doped indium oxide thin-film transistors", Jpn. J. Appl. Phys., 50, 080202-1-080202-3. https://doi.org/10.7567/JJAP.50.080202
  40. Park, J.H., Yoo, Y.B., Lee, K.H., Jang, W.S., Oh, J.Y., Chae, S.S., Choi, W.J. and Baik, H.K. (2012), "Role of alkaline-earth metal in solution-processed indium oxide based thin-film transistors", Appl. Phys. Express, 5, 111101-1 -111101-3. https://doi.org/10.1143/APEX.5.111101
  41. Patzke, G., and Binnewies, M. (2000), "Investigations in the $\beta$-$Ga_2O_3$:$In_2O_3$ system: Crystal growth of solid solutions", Solid State Sci., 2, 689-699. https://doi.org/10.1016/S1293-2558(00)01072-4
  42. Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr. and Rapkine, D.H. (1995), "Zinc-indium-oxide: A high conductivity transparent conducting oxide", Appl. Phys. Lett., 67, 2246-2248. https://doi.org/10.1063/1.115118
  43. Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Cava, R.J., Hou, S.Y., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr., Rapkine, D.H. and Van Dover, R.B. (1994), "Transparent conducting thin films of $GaInO_3$", Appl. Phys. Lett. 65, 115-117. https://doi.org/10.1063/1.113052
  44. Pramod, N.G., Pandey, S.N. and Sahay, P.P. (2012), "Structural, optical and methanol sensing properties of sprayed $In_2O_3$ nanoparticle thin films", Ceram. Int., 38, 4151-4158. https://doi.org/10.1016/j.ceramint.2012.01.075
  45. Singhal, A., Achary, S.N., Manjanna, J., Jayakumar, O.D., Kadam R.M. and Tyagi, A.K. (2009), "Colloidal Fe-doped indium oxide nanoparticles: Facile synthesis, structural, and magnetic properties", J. Phys. Chem. C, 113, 3600-3606. https://doi.org/10.1021/jp8097846
  46. Takeuchi, M., Watanabe, Y. and Ozawa, S. (1991), "Gas-sensitive properties of ultrafine $In_2O_3$ particle layers prepared by gas evaporation technique", Appl. Surf. Sci., 48, 526-529.
  47. Tang, Y. and Ma, J. (2014), "$In_2O_3$ nanostructures: synthesis and chlorobenzene sensing properties", RSC Adv., 4, 25692-25697. https://doi.org/10.1039/c3ra46554c
  48. Trasferetti, B.C., Davanzo, C.U. and Zoppi, R.A. (2012), "Infrared reflection-absorption characterization of $TiO_2$ films on ITO: detection of LO modes", Electrochem. Commun., 4, 301-304.
  49. Van Deelen, J., Illiberi, A., Hovestad, A., Barbu, I., Klerk, L. and Buskens, P. (2012), "Transparent conducting materials: overview and recent results", Proceedings of the SPIE, Thin Film Solar 4, California, U. S., SPIE, 8470.
  50. Wang, A., Babcock, J.R., Edleman, N.L., Metz, A.W., Lane, M.A., Asahi, R., Dravid, V.P., Kannewurf, C.R., Freeman, A.J. and Marks, T.J. (2001), "Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors", Proc. Nat. Acad. Sci., 98, 7113-7116. https://doi.org/10.1073/pnas.121188298
  51. Wang, C.Y., Dai, Y., Pezolt, J., Lu, B., Kups, T., Cimalla, V. and Ambacher, O. (2008), "Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide", Cryst. Growth Des., 8, 1257-1260. https://doi.org/10.1021/cg700910n
  52. Wang, Y., Li, L., Chen, J., Song, Z., An, Y. and Zhang, Y. (2009), "Preparation and Properties of Infrared Transparent Conductive Thin Films", Proceedings of the Green Chemistry in Research and Development of Advanced Materials, MRS Proceedings.
  53. Warmsingh, C., Yoshida, Y., Readey, D., Perkins, J., Parilla, P., Teplin, C., Kaydanova, T., Alleman, J., Gedvilas, L., Keyes, B., Gessert, T., Coutts, T. and Ginley, D. (2003), "Highly Conductive Textured Molybdenum Doped Indium Oxide Thin Films", Proceedings of the NREL Conference, Colorado, U.S.
  54. White, W.B. and Keramidas, V.G. (1972), "Vibrational spectra of oxides with the C-type rare earth oxide structure", Spectrochim. Acta A, 28, 501-509. https://doi.org/10.1016/0584-8539(72)80237-X
  55. Wu, P., Li, Q., Zhao, C.X., Zhang, D.L., Chi, L.F. and Xiao, T. (2008), "$SO_2$ adsorption capacity of $K_2CO_3$-impregnated activated carbon as a function of $K_2CO_3$ content loaded by soaking and incipient wetness", Appl. Surf. Sci., 255, 3201-3207. https://doi.org/10.1016/j.apsusc.2008.09.032
  56. Xu, L., Su, Y., Li, S., Chen, Y., Zhou, Q., Yin, S. and Feng, Y. (2007), "Self-assembly and hierarchical organization of $Ga_2O_3$/$In_2O_3$ nanostructures", J. Phys. Chem. B, 111, 760-766. https://doi.org/10.1021/jp066609p
  57. Yin, W., Su, J., Cao, M., Ni, C., Cloutier, S.G., Huang, Z., Ma, X., Ren, L., Hu, C. and Wei, B. (2009), "$In(OH)_3$ and $In_2O_3$ micro/nanostructures: Controllable NaOAc-assisted microemulsion synthesis and Raman properties", J. Phys. Chem. C, 113, 19493-19499. https://doi.org/10.1021/jp906328z
  58. Yoshida, Y., Wood, D.M., Gessert, T.A. and Coutts, T.J. (2004), "High-mobility, sputtered films of indium oxide doped with molybdenum", Appl. Phys. Lett., 84, 2097-2099. https://doi.org/10.1063/1.1687984
  59. Zhang, D.H., Li, C., Han, S., Liu, X.L., Tang, T., Jin, W. and Zhou, C.W. (2003), "Electronic transport studies of single-crystalline $In_2O_3$ nanowires", Appl. Phys. Lett., 82(1), 112-114. https://doi.org/10.1063/1.1534938
  60. Zheng, M.J., Zhang, L.D., Li, G.H., Zhang, Y.Z. and Wang, X.F. (2001), "Ordered indium-oxide nanowire arrays and their photoluminescence properties", Appl Phys Lett., 79, 839-841. https://doi.org/10.1063/1.1389071
  61. Zhou, H., Cai, W. and Zhang, L. (1999), "Electroluminescence from n-$In_2O_3$: Sn randomly assembled nanorods/p-SiC heterojunction", Appl. Phys. Lett., 75, 495-500. https://doi.org/10.1063/1.124427
  62. Zuo, J., Xu, C., Liu, X., Wang, C., Wang, C., Hu, Y. and Qian, Y. (1994), "Study of the Raman spectrum of nanometer $SnO_2$", J. Appl. Phys., 75, 1835-1836. https://doi.org/10.1063/1.356348

Cited by

  1. Stable and High-Performance Indium Oxide Thin-Film Transistor by Ga Doping vol.63, pp.3, 2016, https://doi.org/10.1109/TED.2016.2518703
  2. Effect of Ga incorporation on morphology and defect structures evolution in VLS grown 1D In 2 O 3 nanostructures 2018, https://doi.org/10.1016/j.apsusc.2018.01.125
  3. Ga2O3–In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity vol.62, pp.6, 2017, https://doi.org/10.1134/S1063774517060177
  4. Hydrothermal synthesis of Ga-doped In 2 O 3 nanostructure and its structural, optical and photocatalytic properties vol.71, 2017, https://doi.org/10.1016/j.mssp.2017.08.025
  5. Nitrogen-Doped Carbon Dots Induced Enhancement in CO 2 Sensing Response From ZnO–Porous Silicon Hybrid Structure vol.8, pp.None, 2015, https://doi.org/10.3389/fchem.2020.00291