DOI QR코드

DOI QR Code

Expression of Cancer-Testis Antigens in Pediatric Cancers

  • Published : 2015.08.03

Abstract

Cancer-testis antigens (CTAs) are a group of tumor-associated antigens with more than 140 members whose expression has been shown to be limited to gametogenic tissues and placenta among normal tissues. However, malignant tissues of different origins have shown aberrant and elevated expression of these antigens. Such a pattern of expression endows beneficial properties for use as cancer biomarkers as well as immunotherapeutic targets as a result of the immune-privileged status of the testes. CTAs have been shown to be expressed in pediatric brain tumors, different types of sarcomas, leukemias, and lymphomas as well as neuroblastomas. Although data regarding their expression pattern in childhood tumors are not as comprehensive as for adult tumors, it is supposed that CTA-based immunotherapeutic approaches can also be used for pediatric cancers. However, there are limited data about the objective clinical responses following immunotherapy in such patients. Here we try to review the available information.

Keywords

References

  1. Bernt KM, Armstrong SA (2009). Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol, 46, 33-8. https://doi.org/10.1053/j.seminhematol.2008.09.010
  2. Bodey B, Bodey V, Siegel SE (2008). Expression in childhood primary brain tumors of NY-ESO-1, a cancer/testis antigen: an immunohistochemical study. In Vivo, 22, 83-7.
  3. Bodey B, Siegel SE, Kaiser HE (2002). MAGE-1, a cancer/testis-antigen, expression in childhood astrocytomas as an indicator of tumor progression. In Vivo, 16, 583-8.
  4. Boon K, Edwards JB, Siu IM, et al (2003). Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene, 22, 7687-94. https://doi.org/10.1038/sj.onc.1207043
  5. Castelo-Branco P, Tabori U (2012). Promises and challenges of exhausting pediatric neural cancer stem cells. Pediatr Res, 71, 523-8. https://doi.org/10.1038/pr.2011.63
  6. Dianatpour M, Mehdipour P, Nayernia K, et al (2012). Expression of Testis Specific Genes TSGA10, TEX101 and ODF3 in breast cancer. Iran Red Crescent Med J, 14, 722-6.
  7. Esfandiary A, Ghafouri-Fard S (2015). New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy, 7, 411-39. https://doi.org/10.2217/imt.15.3
  8. Fijak M, Meinhardt A (2006). The testis in immune privilege. Immunol Rev, 213, 66-81. https://doi.org/10.1111/j.1600-065X.2006.00438.x
  9. Ghafouri-Fard S, Abbasi A, Moslehi H, et al (2010a). Elevated expression levels of testis-specific genes TEX101 and SPATA19 in basal cell carcinoma and their correlation with clinical and pathological features. Br J Dermatol, 162, 772-9.
  10. Ghafouri-Fard S, Modarressi MH (2009). Cancer-testis antigens: potential targets for cancer immunotherapy. Arch Iran Med, 12, 395-404.
  11. Ghafouri-Fard S, Modarressi MH, Yazarloo F (2012). Expression of testis-specific genes, TEX101 and ODF4, in chronic myeloid leukemia and evaluation of TEX101 immunogenicity. Ann Saudi Med, 32, 256-61.
  12. Ghafouri-Fard S, Ousati Ashtiani Z, Sabah Golian B, et al (2010b). Expression of two testis-specific genes, SPATA19 and LEMD1, in prostate cancer. Arch Med Res, 41, 195-200. https://doi.org/10.1016/j.arcmed.2010.04.003
  13. Haworth KB, Leddon JL, Chen C, et al (2014). Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer [Epub ahead of print].
  14. Heidebrecht HJ, Claviez A, Kruse ML, et al (2006). Characterization and expression of CT45 in Hodgkin's lymphoma. Clin Cancer Res, 12, 4804-11. https://doi.org/10.1158/1078-0432.CCR-06-0186
  15. Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA, et al (2007). Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer, 120, 67-74. https://doi.org/10.1002/ijc.22118
  16. Jacobs JF, Grauer OM, Brasseur F, et al (2008). Selective cancer-germline gene expression in pediatric brain tumors. J Neurooncol, 88, 273-80. https://doi.org/10.1007/s11060-008-9577-6
  17. Jungbluth AA, Antonescu CR, Busam KJ, et al (2001). Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer, 94, 252-6. https://doi.org/10.1002/ijc.1451
  18. Lasky JL, 3rd, Choe M, Nakano I (2009). Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther, 4, 298-305. https://doi.org/10.2174/157488809789649278
  19. Liu XF, Helman LJ, Yeung C, et al (2000). XAGE-1, a new gene that is frequently expressed in Ewing's sarcoma. Cancer Res, 60, 4752-5.
  20. Mackall CL, Rhee EH, Read EJ, et al (2008). A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res, 14, 4850-8. https://doi.org/10.1158/1078-0432.CCR-07-4065
  21. Oberthuer A, Hero B, Spitz R, et al (2004). The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res, 10, 4307-13. https://doi.org/10.1158/1078-0432.CCR-03-0813
  22. Orentas RJ, Lee DW, Mackall C (2012). Immunotherapy targets in pediatric cancer. Front Oncol, 2, 3.
  23. Robbins PF, Morgan RA, Feldman SA, et al (2011). Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol, 29, 917-24. https://doi.org/10.1200/JCO.2010.32.2537
  24. Saletta F, Wadham C, Ziegler DS, et al (2014). Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA Clinical, 1, 59-77. https://doi.org/10.1016/j.bbacli.2014.06.003
  25. Spanaki A, Perdikogianni C, Linardakis E, et al (2007). Quantitative assessment of PRAME expression in diagnosis of childhood acute leukemia. Leuk Res, 31, 639-42. https://doi.org/10.1016/j.leukres.2006.06.006
  26. Steinbach D, Schramm A, Eggert A, et al (2006). Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res, 12, 2434-41. https://doi.org/10.1158/1078-0432.CCR-05-2552
  27. Steinbach D, Viehmann S, Zintl F, et al (2002). PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet, 138, 89-91. https://doi.org/10.1016/S0165-4608(02)00582-4
  28. Suri V, Das P, Pathak P, et al (2009). Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro Oncol, 11, 274-80. https://doi.org/10.1215/15228517-2008-092
  29. Tabarestani S, Ghafouri-Fard S (2012). Cancer stem cells and response to therapy. Asian Pac J Cancer Prev, 13, 5951-8.
  30. Toledo SR, Zago MA, Oliveira ID, et al (2011). Insights on PRAME and osteosarcoma by means of gene expression profiling. J Orthop Sci, 16, 458-66. https://doi.org/10.1007/s00776-011-0106-7
  31. Vulcani-Freitas TM, Saba-Silva N, Cappellano A, et al (2011). PRAME gene expression profile in medulloblastoma. Arq Neuropsiquiatr, 69, 9-12. https://doi.org/10.1590/S0004-282X2011000100003
  32. Ward E, DeSantis C, Robbins A, et al (2014). Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin, 64, 83-103. https://doi.org/10.3322/caac.21219
  33. Wayne AS, Capitini CM, Mackall CL (2010). Immunotherapy of childhood cancer: from biologic understanding to clinical application. Curr Opin Pediatr, 22, 2-11. https://doi.org/10.1097/MOP.0b013e3283350d3e
  34. Zendman AJ, Van Kraats AA, Weidle UH, et al (2002). The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing's sarcoma. Int J Cancer, 99, 361-9. https://doi.org/10.1002/ijc.10371

Cited by

  1. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy vol.9, pp.12, 2017, https://doi.org/10.2217/imt-2017-0083
  2. Melanoma: a prototype of cancer-testis antigen-expressing malignancies vol.9, pp.13, 2017, https://doi.org/10.2217/imt-2017-0091
  3. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma vol.10, pp.5, 2018, https://doi.org/10.2217/imt-2017-0154