참고문헌
- Ali AY, Farrand L, Kim JY, et al (2012). Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum. Ann NY Acad Sci, 1271, 58-67. https://doi.org/10.1111/j.1749-6632.2012.06734.x
- Baj G, Arnulfo A, Deaglio S, et al (2002). Arsenic trioxide and breast cancer: analysis of the apoptotic, differentiative and immunomodulatory effects. Breast Cancer Res Treat, 73, 61-73. https://doi.org/10.1023/A:1015272401822
- Bauer JA, Ye F, Marshall CB, et al (2010). RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells. Breast Cancer Res, 12, 41.
- Branham MT, Nadin SB, Vargas-Roig LM, et al (2004). DNA damage induced by paclitaxel and DNA repair capability of peripheral blood lymphocytes as evaluated by the alkaline comet assay. Mutat Res, 560, 11-7. https://doi.org/10.1016/j.mrgentox.2004.01.013
- Bulavin DV, Demidov ON, Saito S, et al (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet, 31, 210-5. https://doi.org/10.1038/ng894
- Burns TF, Fei P, Scata KA, et al (2003). Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Molec Cell Biol, 23, 5556-71. https://doi.org/10.1128/MCB.23.16.5556-5571.2003
- Cai X, Yu Y, Huang Y, et al (2003). Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia, 17, 1333-7. https://doi.org/10.1038/sj.leu.2402983
- Cheng B, Yang X, Han Z, et al (2008). Arsenic trioxide induced the apoptosis of laryngeal cancer via down-regulation of survivin mRNA. Auris Nasus Larynx, 35, 95-101. https://doi.org/10.1016/j.anl.2007.07.009
- Chou TC, Talalay P (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 22, 27-55. https://doi.org/10.1016/0065-2571(84)90007-4
- Dogra S, Bandi S, Viswanathan P, et al (2015). Arsenic trioxide amplifies cisplatin toxicity in human tubular cells transformed by HPV-16 E6/E7 for further therapeutic directions in renal cell carcinoma. Cancer Lett, 356, 953-61. https://doi.org/10.1016/j.canlet.2014.11.008
- Duan XF, Wu YL, Xu HZ, et al (2010). Synergistic mitosisarresting effects of arsenic trioxide and paclitaxel on human malignant lymphocytes. Chem Biol Interact, 183, 222-30. https://doi.org/10.1016/j.cbi.2009.09.012
- Emadi A, Gore SD (2010). Arsenic trioxide-An old drug rediscovered. Blood Rev, 24, 191-9. https://doi.org/10.1016/j.blre.2010.04.001
- Fiscella M, Zhang H, Fan S, et al (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A, 94, 6048-53. https://doi.org/10.1073/pnas.94.12.6048
- Ghanbari P, Mohseni M, Tabasinezhad M, et al (2014). Inhibition of survivin restores the sensitivity of breast cancer cells to docetaxel and vinblastine. Appl Biochem Biotechnol.
- Goncalves A, Braguer D, Kamath K, et al (2001). Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci U S A, 98, 11737-42. https://doi.org/10.1073/pnas.191388598
- Gottesman MM (2002). Mechanisms of cancer drug resistance. Annu Rev Med, 53, 615-27. https://doi.org/10.1146/annurev.med.53.082901.103929
- Halicka HD, Smolewski P, Darzynkiewicz Z, et al (2002). Arsenic trioxide arrests cells early in mitosis leading to apoptosis. Cell Cycle, 1, 201-9.
- Herbst RS, Khuri FR (2003). Mode of action of docetaxel-a basis for combination with novel anticancer agents. Cancer Treatment Reviews, 29, 407-15. https://doi.org/10.1016/S0305-7372(03)00097-5
- Ikui AE, Yang CP, Matsumoto T, et al (2005). Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle, 4, 1385-8. https://doi.org/10.4161/cc.4.10.2061
- Kavallaris M (1997). The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs, 8, 17-25. https://doi.org/10.1097/00001813-199701000-00002
- Kong W, Jiang X, Mercer WE (2009). Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax. Cancer Biol Ther, 8, 555-63. https://doi.org/10.4161/cbt.8.6.7742
- Li Y, Qu X, Qu J, et al (2009). Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Letters, 284, 208-15. https://doi.org/10.1016/j.canlet.2009.04.035
- Ling YH, Jiang JD, Holland JF, et al (2002). Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Mol Pharmacol, 62, 529-38. https://doi.org/10.1124/mol.62.3.529
- Liu H, Tao X, Ma F, et al (2012a). Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride. Oncol Rep, 28, 1894-902.
- Liu W, Gong Y, Li H, et al (2012b). Arsenic trioxide-induced growth arrest of breast cancer MCF-7 cells involving FOXO3a and IkappaB kinase beta expression and localization. Cancer Biother Radiopharm, 27, 504-12. https://doi.org/10.1089/cbr.2012.1162
- Lu X, Ma O, Nguyen TA, et al (2007). The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell, 12, 342-54. https://doi.org/10.1016/j.ccr.2007.08.033
- Lu X, Nannenga B, Donehower LA (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev, 19, 1162-74. https://doi.org/10.1101/gad.1291305
- Lu X, Nguyen TA, Moon SH, et al (2008). The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev, 27, 123-35. https://doi.org/10.1007/s10555-008-9127-x
- McGrogan BT, Gilmartin B, Carney DN, et al (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta, 1785, 96-132.
- Melet A, Song K, Bucur O, et al (2008). Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol, 615, 47-79. https://doi.org/10.1007/978-1-4020-6554-5_4
- Meng XZ, Zheng TS, Chen X, et al (2011). microRNA expression alteration after arsenic trioxide treatment in HepG-2 cells. J Gastroenterol Hepatol, 26, 186-93. https://doi.org/10.1111/j.1440-1746.2010.06317.x
- Momand J, Jung D, Wilczynski S, et al (1998). The MDM2 gene amplification database. Nucleic Acids Res, 26, 3453-9. https://doi.org/10.1093/nar/26.15.3453
- Parssinen J, Alarmo EL, Karhu R, et al (2008). PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53. Cancer Genet Cytogenet, 182, 33-9. https://doi.org/10.1016/j.cancergencyto.2007.12.013
- Parssinen J, Kuukasjarvi T, Karhu R, et al (2007). High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J Cancer, 96, 1258-64. https://doi.org/10.1038/sj.bjc.6603692
- Platanias LC (2009). Biological responses to arsenic compounds. J Biol Chem, 284, 18583-7. https://doi.org/10.1074/jbc.R900003200
- Rivas MA, Venturutti L, Huang YW, et al (2012). Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res, 14, 77. https://doi.org/10.1186/bcr3187
- Rossi M, Demidov ON, Anderson CW, et al (2008). Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Nucleic Acids Res, 36, 7168-80. https://doi.org/10.1093/nar/gkn888
- Sabzichi M, Hamishehkar H, Ramezani F, et al (2014). Luteolinloaded phytosomes sensitize human breast carcinoma MDAMB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac J Cancer Prev, 15, 5311-6. https://doi.org/10.7314/APJCP.2014.15.13.5311
- Samadi N, Bekele R, Capatos D, et al (2011). Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie, 93, 61-70. https://doi.org/10.1016/j.biochi.2010.08.002
- Samadi N, Gaetano C, Goping IS, et al (2009). Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene, 28, 1028-39. https://doi.org/10.1038/onc.2008.442
- Samadi N, Ghanbari P, Mohseni M, et al (2014). Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells. J Cancer Res Ther, 10, 715-21.
- Sharifi S, Barar J, Hejazi MS, et al (2014). Roles of the Bcl-2/Bax Ratio, Caspase-8 and 9 in Resistance of Breast Cancer Cells to Paclitaxel. Asian Pac J Cancer Prev, 15, 8617-22. https://doi.org/10.7314/APJCP.2014.15.20.8617
- Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30. https://doi.org/10.3322/caac.21166
- Skidan I, Miao B, Thekkedath RV, et al (2009). In vitro cytotoxicity of novel pro-apoptotic agent DM-PIT-1 in PEGPE-based micelles alone and in combination with TRAIL. Drug Deliv, 16, 45-51. https://doi.org/10.1080/10717540802517951
- Takekawa M, Adachi M, Nakahata A, et al (2000). p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. Embo J, 19, 6517-26. https://doi.org/10.1093/emboj/19.23.6517
- Vousden KH, Lu X (2002). Live or let die: the cell's response to p53. Nat Rev Cancer, 2, 594-604. https://doi.org/10.1038/nrc864
- Wahl GM, Carr AM (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol, 3, 277-86. https://doi.org/10.1038/ncb1201-e277
- Wang L, Mosel AJ, Oakley GG, et al (2012). Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer. Mol Cancer Ther, 11, 2401-9. https://doi.org/10.1158/1535-7163.MCT-12-0448
- Yoda A, Toyoshima K, Watanabe Y, et al (2008). Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase. J Biol Chem, 283, 18969-79. https://doi.org/10.1074/jbc.M800560200
- Zekri A, Ghaffari SH, Yousefi M, et al (2013). Autocrine human growth hormone increases sensitivity of mammary carcinoma cell to arsenic trioxide-induced apoptosis. Mol Cell Endocrinol, 377, 84-92. https://doi.org/10.1016/j.mce.2013.07.002
피인용 문헌
- Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer vol.19, pp.4, 2017, https://doi.org/10.1007/s11051-017-3848-0
- Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells pp.1551-4005, 2017, https://doi.org/10.1080/15384101.2017.1387699
- Trisenox induces cytotoxicity through phosphorylation of mitogen-activated protein kinase molecules in acute leukemia cells vol.32, pp.10, 2018, https://doi.org/10.1002/jbt.22207
- Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles pp.1029-2330, 2018, https://doi.org/10.1080/1061186X.2018.1491978