DOI QR코드

DOI QR Code

Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells

  • Published : 2015.08.03

Abstract

Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity ($IC_{50}$ values=$10.7{\pm}1.76$, $55.2{\pm}2.24$, and $87.4{\pm}6.65{\mu}M$, respectively) whereas the $IC_{50}$ value of berberine was higher than $500{\mu}M$. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant ($IC_{50}=72.7{\pm}7.22{\mu}M$) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of $IC_{50}$ value at 7-day treatment stated that B1 < B4 < B2 ($0.44{\pm}0.03$, $2.88{\pm}0.23$, and $6.05{\pm}0.64{\mu}M$, respectively). Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription-polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.

Keywords

References

  1. Bahar M, Deng Y, Zhu X, et al (2011). Potent antiprotozoal activity of a novel semi-synthetic berberine derivative. Bioorg Med Chem Lett, 21, 2606-10. https://doi.org/10.1016/j.bmcl.2011.01.101
  2. Bashir S, Gilani AH (2011). Antiurolithic effect of berberine is mediated through multiple pathways. Eur J Pharmacol, 651, 168-75. https://doi.org/10.1016/j.ejphar.2010.10.076
  3. Bendary E, Francis RR, Ali HMG, et al (2013). Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Ann Agricultural Sci, 58, 173-81. https://doi.org/10.1016/j.aoas.2013.07.002
  4. Bors W, Heller W, Michael C, et al (1996). Flavonoids and polyphenols: Chemistry and biology. In 'Handbook of Antioxidants', Eds Cadenas E and Packer L. Marcel Dekker, New York pp 409-66.
  5. Cai Y, Xia Q, Luo R, et al (2014). Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J Nat Med, 68, 53-62. https://doi.org/10.1007/s11418-013-0766-z
  6. Chu SC, Yu CC, Hsu LS, et al (2014). Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol Pharmacol, 86, 609-23. https://doi.org/10.1124/mol.114.094037
  7. Finkel T, Holbrook NJ (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239-47. https://doi.org/10.1038/35041687
  8. Giorgio M, Migliaccio E, Orsini F, et al (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122, 221-33. https://doi.org/10.1016/j.cell.2005.05.011
  9. Hwang JM, Wang CJ, Chou FP, et al (2002). Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol, 76, 664-70. https://doi.org/10.1007/s00204-002-0351-9
  10. Jang MH, Kim HY, Kang KS, et al (2009). Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch Pharm Res, 32, 341-5. https://doi.org/10.1007/s12272-009-1305-z
  11. Nair AJ, Sudhakaran PR, Rao MJ, et al (1992). Berberine synthesis by callus and cell suspension cultures of Coscinium fenestratum. Plant Cell Tiss Org, 29, 7-10. https://doi.org/10.1007/BF00036139
  12. Khan MA, Tania M, Zhang DZ, et al (2010). Antioxidant enzymes and cancer. Chin J Cancer Res, 22, 87-92. https://doi.org/10.1007/s11670-010-0087-7
  13. Khan MA, Chen HC, Wan XX, et al (2013). Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells, 35, 219-25. https://doi.org/10.1007/s10059-013-2259-z
  14. Kim SH, Lee SJ, Lee JH, et al (2002). Antimicrobial activity of 9-O-acyl-and 9-O-alkylberberrubine derivatives. Planta Med, 68, 277-81. https://doi.org/10.1055/s-2002-23128
  15. Klongpityapong P, Supabphol R, Supabphol A (2013). Antioxidant effects of gamma-oryzanol on human prostate cancer cells. Asian Pac J Cancer Prev, 14, 5421-5. https://doi.org/10.7314/APJCP.2013.14.9.5421
  16. Liu H, Wang L, Li Y, et al (2014). Structural optimization of berberine as a synergist to restore antifungal activity of fluconazole against drug-resistant Candida albicans. Chem Med Chem, 9, 207-16. https://doi.org/10.1002/cmdc.201300332
  17. Lo CY, Hsu LC, Chen MS, et al (2013). Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role. Bioorg Med Chem Lett, 23, 305-9. https://doi.org/10.1016/j.bmcl.2012.10.098
  18. Lobner D (2000). Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods, 96, 147-52. https://doi.org/10.1016/S0165-0270(99)00193-4
  19. Park SM, Jung HC, Koak IS, et al (2003). Oxidant-induced cell death in renal epithelial cells: differential effects of inorganic and organic hydroperoxides. Pharmacol Toxicol, 92, 43-50. https://doi.org/10.1034/j.1600-0773.2003.920108.x
  20. Petit E, Courtin A, Kloosterboer HJ, et al (2009). Progestins induce catalase activities in breast cancer cells through PRB isoform: correlation with cell growth inhibition. J Steroid Biochem Mol Biol, 115, 153-60. https://doi.org/10.1016/j.jsbmb.2009.04.002
  21. Pohanka M (2013). Role of oxidative stress in infectious diseases. A review. Folia Microbiol (Praha), 58, 503-13. https://doi.org/10.1007/s12223-013-0239-5
  22. Rajendran J, Jyothi A, Jacob L, et al (2014). Simultaneous determination of berberine and ${\beta}$-sitosterol in the leaf extracts of Naravelia zeylanica by analytical methods and their in vitro antidiabetic activity. J Adv Pharm Edu Res, 4, 365-71.
  23. Supabphol R, Supabphol A (2013). Cytoprotective potential of royal jelly on human umbilical vein endothelial cells against nicotine toxicity via catalase. Eur J Med Plants, 3, 88-98. https://doi.org/10.9734/EJMP/2013/1386
  24. Supabphol R, Wattanachaiyingcharoen R, Kamkaen N, et al (2013). Cytoprotective effect of Vernonia cinerea Less. extract on human umbilical vein endothelial cells against nicotine toxicity. J Med Plants Res, 7, 980-7.
  25. 't Hoen PA, Van der Lans CA, Van Eck M, et al (2003). Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res, 93, 262-9. https://doi.org/10.1161/01.RES.0000082978.92494.B1
  26. Tan Y, Tang Q, Hu BR, et al (2007). Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol Sin, 28, 1914-8. https://doi.org/10.1111/j.1745-7254.2007.00705.x
  27. Tangjitjaroenkun J, Supabphol R, Chavasiri W (2012). Antioxidant effect of Zanthoxylum limonella Alston. J Med Plants Res, 6, 1407-14.
  28. Valgimigli L, Amorati R, Fumo MG, et al (2008). The unusual reaction of semiquinone radicals with molecular oxygen. J Org Chem, 73, 1830-41. https://doi.org/10.1021/jo7024543
  29. Wojtyczka RD, Dziedzic A, Kepa M, et al (2014). Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 19, 6583-96. https://doi.org/10.3390/molecules19056583
  30. Yahayo W, Supabphol A, Supabphol R (2013). Suppression of human fibrosarcoma cells metastasis by Phyllanthus emblica extract in vitro. Asian Pac J Cancer Prev, 14, 6863-7. https://doi.org/10.7314/APJCP.2013.14.11.6863
  31. Yip NK, Ho WS (2013). Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol Rep, 30, 1107-12.
  32. Yu J, Kim AK (2009). Effect of taurine on antioxidant enzyme system in B16F10 melanoma cells. Adv Exp Med Biol, 643, 491-9. https://doi.org/10.1007/978-0-387-75681-3_51
  33. Zhang L, Li J, Ma F, et al (2012). Synthesis and cytotoxicity evaluation of 13-n-alkyl berberine and palmatine analogues as anticancer agents. Molecules, 17, 11294-302. https://doi.org/10.3390/molecules171011294
  34. Zhang SL, Chang JJ, Damu GL, et al (2013). Novel berberine triazoles: synthesis, antimicrobial evaluation and competitive interactions with metal ions to human serum albumin. Bioorg Med Chem Lett, 23, 1008-12. https://doi.org/10.1016/j.bmcl.2012.12.036
  35. Zhu SL, Yan L, Zhang YX, et al (2014). Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biol Pharm Bull, 37, 268-73. https://doi.org/10.1248/bpb.b13-00734
  36. Zuo GY, Li Y, Han J, et al (2012). Antibacterial and synergy of berberines with antibacterial agents against clinical multidrug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules, 17, 10322-30. https://doi.org/10.3390/molecules170910322

Cited by

  1. In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine vol.38, pp.3, 2017, https://doi.org/10.1038/aps.2016.120
  2. Preventive use of berberine in inhibition of lead-induced renal injury in rats vol.25, pp.5, 2018, https://doi.org/10.1007/s11356-017-0702-y
  3. )-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468) pp.03656233, 2018, https://doi.org/10.1002/ardp.201800128
  4. Liquid Chromatography-Tandem Mass Spectrometry Simultaneous Determination and Pharmacokinetic Study of Fourteen Alkaloid Components in Dog Plasma after Oral Administration of Corydalis bungeana Turcz Extract vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081927
  5. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2221-x
  6. The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/1056173