DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode

메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성

  • Park, Ji Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Jung, Min Zy (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2015.04.28
  • Accepted : 2015.08.17
  • Published : 2015.10.10

Abstract

Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

리튬이온 전지용 음극소재의 용량 및 사이클 성능을 향상시키기 위해서 Si/C/CNF 합성물의 특성이 조사되었다. 제조과정으로는 SBA-15를 합성하고 볼밀링을 이용한 마그네슘환원을 통해 Si/MgO를 얻은 다음, Phenolic resin과 CNF를 이용해 탄화과정을 거쳐 최종적으로 산처리하여 Si/C/CNF 활물질을 합성하였다. 합성된 Si/C/CNF는 BET, XRD, FE-SEM 그리고 TGA를 이용하여 분석하였다. $50^{\circ}C{\sim}70^{\circ}C$까지 온도에 따라 SBA-15를 합성한 결과 $60^{\circ}C$에서 가장 큰 비표면적을 갖는 결과를 얻었다. 또한 LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해질을 사용하여, 충방전, 사이클, CV와 임피던스 등과 같은 전기화학적 테스트를 수행하여 Si/C/CNF 전극의 이차전지 음극활물질로서 성능을 조사하였다. Si/C/CNF (Si : CNF = 97 : 3 중량비)를 이용한 전지의 용량은 1,947 mAh/g으로 다른 합성물보다 우수한 결과를 보였다. CNF 첨가량이 3 wt%에서 11 wt%로 증가함에 따라 용량 보존율이 84~77%로 안정성이 감소되었다. Si/C/CNF 합성소재 전극이 이차전지의 사이클 성능과 전기전도도를 개선할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. K. S. Eom, T. Joshi, A. Bordes, I. Do, and T. Fuller, The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode, J. Power Sources, 249, 118-124 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.087
  2. W. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13-24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  3. B. C. Yu, Y. Hwa, J. H. Kim, and H. J. Sohn, A New Approach to Synthesis of Porous SiOx Anode for Li-ionBatteries via Chemical Etching of Si Crystallites, Electrochim. Acta, 117, 426-430 (2014). https://doi.org/10.1016/j.electacta.2013.11.158
  4. Y. Hwa, W. S. Kim, B. C. Yu, J. H. Kim, S. H. Hong, and H. J. Sohn, Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li ion batteries, J. Power Sources, 252, 144-149 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.118
  5. H. Tian, X. Tan, F. Xin, C. Wang, and W. Han, Micro-sized nano-porous Si/C anodes for lithium ion batteries", Nano Energy, 11, 490-499 (2015). https://doi.org/10.1016/j.nanoen.2014.11.031
  6. J. Kaspar, G. Z. Magdalena, S. Lauterbach, H. J. Kleebe, and R. Riedel, Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs nano-amorphous silicon embedment on the electrochemical properties, J. Power Sources, 269, 164-172 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.089
  7. T. Ukmar and O. Planinsek, Ordered mesoporous silicates as matrices for controlled release of drugs, Acta Pharm., 60, 373-385 (2010).
  8. I. Hong, B. Scrosati, and F. Croce, Mesoporous, Si/C composite anode for Li battery obtained by 'magnesium-thermal' reduction process, Solid State Ionics, 232, 24-28 (2013). https://doi.org/10.1016/j.ssi.2012.11.003
  9. H. S. Ko, J. E. Choi, and J. D. Lee, Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/$SiO_2$, Appl. Chem. Eng., 25, 592-597 (2014). https://doi.org/10.14478/ace.2014.1094
  10. J. Y. Park, M. Z. Jung, and J. D. Lee, Electrochemical Characteristics of Silicon/Carbon Composites for Anode Material of Lithium Ion Battery, Appl. Chem. Eng., 26, 80-85 (2015). https://doi.org/10.14478/ace.2014.1119
  11. M. Zhang, X. Hou, J. Wang, M. Li, S. Hu, Z. Shao, and X. Liu, Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries, J. Alloys Compd., 588, 206-211 (2014). https://doi.org/10.1016/j.jallcom.2013.10.160
  12. X. Li, G. Lei, Z. Li, Y. Zhang, and Q. Xiao, Carbon-encapsulated Si nano particle composite nano fibers with porous structure as lithium-ion battery anodes, Solid State Ionics, 261, 111-116 (2014). https://doi.org/10.1016/j.ssi.2014.04.016
  13. N. Rahmat, A. Z. Abdullah, and A. R. Mohamed, A Review: Mesoporous Santa Barbara Amorphous-15, Types, Synthesis and Its Applications towards Biorefinery Production, Am. J. Appl. Sci., 7, 1579-1586 (2010). https://doi.org/10.3844/ajassp.2010.1579.1586
  14. Y. Wang, F. Zhang, Y. Wang, J. Ren, C. Li, X. Liu, Y. Guo, Y. Guo, and G. Lu, Synthesis of length controllable mesoporous SBA-15 rods, Mater. Chem. Phys., 115, 649-655 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.027
  15. L. Yue, W. Zhang, J. Yangc, and L. Zhang, Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries, Electrochim. Acta, 125, 206-217 (2014). https://doi.org/10.1016/j.electacta.2014.01.094
  16. S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 162, 1379-1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
  17. S. Y. Kim, B. H. Kim, and K. S. Yang, Preparation and electrochemical characteristics of a polyvinylpyrrolidone-stabilized Si/carbon composite nano fiber anode for a lithium ion battery, J. Electroanal. Chem., 705, 52-56 (2013). https://doi.org/10.1016/j.jelechem.2013.07.025
  18. H. Wang, P. Wu, H. Shi, W. Tang, Y. Tang, Y. Zhou, P. She, and T. Lu, Hollow porous silicon oxide nanobelts for high-performance lithium storage, J. Power Sources, 274, 951-956 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.180
  19. Y. M. Kim, J. Ahn, S. H. Yu, D. Y. Chung, K. J. Lee, and J. K. Lee, Y. E. Sung, Titanium Silicide Coated Porous Silicon Nanospheres as Anode Materials for Lithium Ion Batteries, Electrochim. Acta, 151, 256-262 (2015). https://doi.org/10.1016/j.electacta.2014.11.016

Cited by

  1. Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.303