DOI QR코드

DOI QR Code

Role of Nucleotide-binding and Oligomerization Domain 2 Protein(NOD2) in the Development of Atherosclerosis

  • Kim, Ha-Jeong (Department of Physiology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Tumor Heterogeneity and Network (THEN) Research Center, School of Medicine, Kyungpook National University)
  • Received : 2015.05.28
  • Accepted : 2015.08.14
  • Published : 2015.11.01

Abstract

NOD2 (nucleotide-binding and oligomerization domain 2) was initially reported as a susceptibility gene for Crohn's disease, with several studies focused on elucidating its molecular mechanism in the progression of Crohn's disease. We now know that NOD2 is an intracellular bacterial sensing receptor, and that MDP-mediated NOD2 activation drives inflammatory signaling. Various mutations in NOD2 have been reported, with NOD2 loss of function being associated with the development of Crohn's disease and other autoimmune diseases. These results suggest that NOD2 not only has an immune stimulatory function, but also an immune regulatory function. Atherosclerosis is a chronic inflammatory disease of the arterial wall; its pathologic progression is highly dependent on the immune balance. This immune balance is regulated by infiltrating monocytes and macrophages, both of which express NOD2. These findings indicate a potential role of NOD2 in atherosclerosis. The purpose of this review is to outline the known roles of NOD2 signaling in the pathogenesis of atherosclerosis.

Keywords

References

  1. Correa RG, Milutinovic S, Reed JC. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci Rep. 2012;32:597-608. https://doi.org/10.1042/BSR20120055
  2. Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003;278:41702-41708. https://doi.org/10.1074/jbc.M307198200
  3. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276: 4812-4818. https://doi.org/10.1074/jbc.M008072200
  4. Yao Q. Nucleotide-binding oligomerization domain containing 2: structure, function, and diseases. Semin Arthritis Rheum. 2013;43:125-130. https://doi.org/10.1016/j.semarthrit.2012.12.005
  5. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9-23. https://doi.org/10.1038/nri3565
  6. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc. 2012;134:13535-13537. https://doi.org/10.1021/ja303883c
  7. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology. 2003;124:993-1000. https://doi.org/10.1053/gast.2003.50153
  8. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869-8872. https://doi.org/10.1074/jbc.C200651200
  9. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001;411:599-603. https://doi.org/10.1038/35079107
  10. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066-2078. https://doi.org/10.1056/NEJMra0804647
  11. Yamamoto S, Ma X. Role of Nod2 in the development of Crohn's disease. Microbes Infect. 2009;11:912-918. https://doi.org/10.1016/j.micinf.2009.06.005
  12. Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;4:333.
  13. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898-908. https://doi.org/10.1016/j.immuni.2014.12.010
  14. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, Tysk C, O'Morain C, Gassull M, Binder V, Finkel Y, Modigliani R, Gower-Rousseau C, Macry J, Merlin F, Chamaillard M, Jannot AS, Thomas G, Hugot JP; Epwg-Ibd Group; Epimad Group; Getaid Group. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70:845-857. https://doi.org/10.1086/339432
  15. Coulombe F, Divangahi M, Veyrier F, de Leseleuc L, Gleason JL, Yang Y, Kelliher MA, Pandey AK, Sassetti CM, Reed MB, Behr MA. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med. 2009;206:1709-1716. https://doi.org/10.1084/jem.20081779
  16. Zhu K, Yin X, Tang X, Zhang F, Yang S, Zhang X. Metaanalysis of NOD2/CARD15 polymorphisms with psoriasis and psoriatic arthritis. Rheumatol Int. 2012;32:1893-1900. https://doi.org/10.1007/s00296-011-1813-2
  17. Liu HQ, Zhang XY, Edfeldt K, Nijhuis MO, Idborg H, Back M, Roy J, Hedin U, Jakobsson PJ, Laman JD, de Kleijn DP, Pasterkamp G, Hansson GK, Yan ZQ. NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33:2193-2201. https://doi.org/10.1161/ATVBAHA.113.301715
  18. Yuan H, Zelkha S, Burkatovskaya M, Gupte R, Leeman SE, Amar S. Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc Natl Acad Sci USA. 2013;110:E5059-E5068. https://doi.org/10.1073/pnas.1320862110
  19. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006; 367:1747-1757. https://doi.org/10.1016/S0140-6736(06)68770-9
  20. Anogeianaki A, Angelucci D, Cianchetti E, D'Alessandro M, Maccauro G, Saggini A, Salini V, Caraffa A, Tete S, Conti F, Tripodi D, Shaik-Dasthagirisaheb YB. Atherosclerosis: a classic inflammatory disease. Int J Immunopathol Pharmacol. 2011; 24:817-825. https://doi.org/10.1177/039463201102400401
  21. Theoharides TC, Sismanopoulos N, Delivanis DA, Zhang B, Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol Sci. 2011;32:534-542. https://doi.org/10.1016/j.tips.2011.05.005
  22. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165-197. https://doi.org/10.1146/annurev.immunol.021908.132620
  23. Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol. 1996;7:330-335. https://doi.org/10.1097/00041433-199610000-00012
  24. Epstein SE, Zhou YF, Zhu J. Potential role of cytomegalovirus in the pathogenesis of restenosis and atherosclerosis. Am Heart J. 1999;138:S476-S478. https://doi.org/10.1016/S0002-8703(99)70279-6
  25. Saikku P. Chlamydia pneumoniae in atherosclerosis. J Intern Med. 2000;247:391-396. https://doi.org/10.1046/j.1365-2796.2000.00659.x
  26. Laberge MA, Moore KJ, Freeman MW. Atherosclerosis and innate immune signaling. Ann Med. 2005;37:130-140. https://doi.org/10.1080/07853890510007304
  27. Zelkha SA, Freilich RW, Amar S. Periodontal innate immune mechanisms relevant to atherosclerosis and obesity. Periodontol 2000. 2010;54:207-221. https://doi.org/10.1111/j.1600-0757.2010.00358.x
  28. Katz JT, Shannon RP. Bacteria and coronary atheroma: more fingerprints but no smoking gun. Circulation. 2006;113:920-922. https://doi.org/10.1161/CIRCULATIONAHA.105.607358
  29. Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a metaanalysis of randomized controlled trials. JAMA. 2005;293:2641-2647. https://doi.org/10.1001/jama.293.21.2641
  30. Wright SD, Burton C, Hernandez M, Hassing H, Montenegro J, Mundt S, Patel S, Card DJ, Hermanowski-Vosatka A, Bergstrom JD, Sparrow CP, Detmers PA, Chao YS. Infectious agents are not necessary for murine atherogenesis. J Exp Med. 2000;191:1437-1442. https://doi.org/10.1084/jem.191.8.1437
  31. Cole JE, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis: a 'Pandora's box' of advances and controversies. Trends Pharmacol Sci. 2013;34:629-636. https://doi.org/10.1016/j.tips.2013.09.008
  32. Deshmukh HS, Hamburger JB, Ahn SH, McCafferty DG, Yang SR, Fowler VG Jr. Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infect Immun. 2009;77:1376-1382. https://doi.org/10.1128/IAI.00940-08
  33. Shimada K, Chen S, Dempsey PW, Sorrentino R, Alsabeh R, Slepenkin AV, Peterson E, Doherty TM, Underhill D, Crother TR, Arditi M. The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection. PLoS Pathog. 2009;5:e1000379. https://doi.org/10.1371/journal.ppat.1000379
  34. Rosenstiel P, Hellmig S, Hampe J, Ott S, Till A, Fischbach W, Sahly H, Lucius R, Folsch UR, Philpott D, Schreiber S. Influence of polymorphisms in the NOD1/CARD4 and NOD2/ CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell Microbiol. 2006;8:1188-1198. https://doi.org/10.1111/j.1462-5822.2006.00701.x
  35. Loving CL, Osorio M, Kim YG, Nunez G, Hughes MA, Merkel TJ. Nod1/Nod2-mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure. Infect Immun. 2009;77:4529-4537. https://doi.org/10.1128/IAI.00563-09
  36. Laman JD, Schoneveld AH, Moll FL, van Meurs M, Pasterkamp G. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am J Cardiol. 2002;90:119-123. https://doi.org/10.1016/S0002-9149(02)02432-3
  37. Rubino SJ, Selvanantham T, Girardin SE, Philpott DJ. Nodlike receptors in the control of intestinal inflammation. Curr Opin Immunol. 2012;24:398-404. https://doi.org/10.1016/j.coi.2012.04.010
  38. Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol. 2004;5:800-808. https://doi.org/10.1038/ni1092
  39. Kim H, Zhao Q, Zheng H, Li X, Zhang T, Ma X. A novel crosstalk between TLR4-and NOD2-mediated signaling in the regulation of intestinal inflammation. Sci Rep. 2015;5:12018. https://doi.org/10.1038/srep12018
  40. Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJ, Clausen BE, Forster I, Kockx MM, Rajewsky K, Kraal G, Hofker MH, de Winther MP. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 2003;112: 1176-1185. https://doi.org/10.1172/JCI200318580
  41. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  42. Noguchi E, Homma Y, Kang X, Netea MG, Ma X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol. 2009;10:471-479. https://doi.org/10.1038/ni.1722
  43. Dagli N, Poyrazoglu OK, Dagli AF, Sahbaz F, Karaca I, Kobat MA, Bahcecioglu IH. Is inflammatory bowel disease a risk factor for early atherosclerosis? Angiology. 2010;61:198-204. https://doi.org/10.1177/0003319709333869
  44. Kayahan H, Sari I, Cullu N, Yuksel F, Demir S, Akarsu M, Goktay Y, Unsal B, Akpinar H. Evaluation of early atherosclerosis in patients with inflammatory bowel disease. Dig Dis Sci. 2012;57:2137-2143. https://doi.org/10.1007/s10620-012-2148-x
  45. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986-1000. https://doi.org/10.1161/ATVBAHA.110.207449
  46. Gomez I, Foudi N, Longrois D, Norel X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot Essent Fatty Acids. 2013;89:55-63. https://doi.org/10.1016/j.plefa.2013.04.004
  47. Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc Med. 2007;17:113-118. https://doi.org/10.1016/j.tcm.2007.03.001
  48. Taleb S, Tedgui A, Mallat Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol. 2015;35:258-264. https://doi.org/10.1161/ATVBAHA.114.303567
  49. Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, Morton V, Sun MY, Jewell D, Coccia M, Harrison O, Maloy K, Schonefeldt S, Bornschein S, Liston A, Simmons A. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521-536. https://doi.org/10.1016/j.immuni.2013.08.035
  50. Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation. 2004;110:1868-1873. https://doi.org/10.1161/01.CIR.0000143041.58692.CC
  51. Marriott I, Rati DM, McCall SH, Tranguch SL. Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge. Infect Immun. 2005;73:2967-2973. https://doi.org/10.1128/IAI.73.5.2967-2973.2005
  52. Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun. 2005;73:7967-7976. https://doi.org/10.1128/IAI.73.12.7967-7976.2005
  53. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, Zimmermann E, Tretiakova M, Cho JH, Hart J, Greenson JK, Keshav S, Nunez G. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut. 2003;52:1591-1597. https://doi.org/10.1136/gut.52.11.1591
  54. Uehara A, Fujimoto Y, Fukase K, Takada H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol. 2007;44:3100-3111. https://doi.org/10.1016/j.molimm.2007.02.007
  55. Uehara A, Imamura T, Potempa J, Travis J, Takada H. Gingipains from Porphyromonas gingivalis synergistically induce the production of proinflammatory cytokines through proteaseactivated receptors with Toll-like receptor and NOD1/2 ligands in human monocytic cells. Cell Microbiol. 2008;10:1181-1189. https://doi.org/10.1111/j.1462-5822.2008.01119.x
  56. Kanno S, Nishio H, Tanaka T, Motomura Y, Murata K, Ihara K, Onimaru M, Yamasaki S, Kono H, Sueishi K, Hara T. Activation of an innate immune receptor, Nod1, accelerates atherogenesis in Apoe-/-mice. J Immunol. 2015;194:773-780. https://doi.org/10.4049/jimmunol.1302841

Cited by

  1. Adipose differentiation-related protein knockdown inhibits vascular smooth muscle cell proliferation and migration and attenuates neointima formation vol.16, pp.3, 2015, https://doi.org/10.3892/mmr.2017.6997
  2. lncRNA ZEB1-AS1 Mediates Oxidative Low-Density Lipoprotein-Mediated Endothelial Cells Injury by Post-transcriptional Stabilization of NOD2 vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.00397